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Abstract. This paper proposes a novel multi-sensor Bernoulli filter (MSBF) based on the finite set 
statistics (FISST) for tracking a single target under the presence of detection uncertainty and clutter. 
The proposed algorithm is an extension of original Bernoulli filter in multi-sensor tracking. First, 
FISST is used to derive multi-sensor likelihood function of the MSBF, and then the sequential Monte 
Carlo (SMC) method is applied to implement the MSBF. Eventually, the simulation results are 
provided to demonstrate the effectiveness of the MSBF.   

1. Introduction 

Recently, the random finite set (RFS) theory has attracted extensive attention for target tracking, 
and lots of tracking approaches based on the RFS have been proposed, e.g. the probability hypothesis 
density (PHD) filter [1][2], the cardinalized PHD filter (CPHD) [3], the multi-Bernoulli filter 
(MeMBer) [1][4] and the Bernoulli filter [5][6]. In particular, the Bernoulli filter is an optimal Bayes 
filter for a single target problem of joint detection and tracking, and this paper considers use the 
measurements from multi-sensor to track a single target in the presence of detection uncertainty and 
clutter. From a theoretical point of view the original Bernoulli filter addressed only single-sensor 
scenarios, and the default multi-sensor Bernoulli filter’s approximation is the ‘iterated corrector 
approximation’ [6]. Note that it requires two steps that the same as the original Bernoulli filter: 
prediction and update. One first uses the update step to calculate the measurement-updated Bernoulli 
RFS for the sensor 1; next using this measurement-updated Bernoulli RFS as a new 
measurement-predicted Bernoulli RFS, and using the update step for the sensor 2 to calculate a new 
measurement-updated Bernoulli RFS for first two sensors; then same procedure is applied to the 
remaining sensors.  

However, if there are k sensors in the target tracking system, the first k-1 sensors largely affect the 
measurement-predicted Bernoulli RFS, the final measurement-updated Bernoulli RFS mainly 
depends on the last kth sensor and the final results of target tracking is calculated by the final 
measurement-updated Bernoulli RFS. Therefore, the ‘iterated corrector approximation’ has a feature: 
changing the order of sensors will produces different track result, and the performance largely 
depends on the detection probability of the last sensor. When the detection probability of the last 
sensor is low, the performance of this approach will be poor and not satisfactory.  

In order to solve the problem, this paper proposes a novel multi-sensor Bernoulli filter (MSBF) 
based on the finite set statistics (FISST) [1] for tracking a single target. The proposed algorithm is an 
extension of original Bernoulli filter in multi-sensor tracking. First, the FISST is used to derive 
multi-sensor likelihood function with two sensors, notice that it can be easily extended to other 
multi-sensor systems, and then the sequential Monte Carlo (SMC) approach is applied to implement 
the MSBF. The simulation results demonstrate that the MSBF can track a single target effectively, 
and it appears more accurate performance than the ‘iterated corrector approximation’. 
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2. Bernoulli Filter 
As is well known, the Bernoulli filter has two steps:  prediction and update. Suppose that the 

posterior density 1kπ −  at time k-1 is a Bernoulli RFS and given by 1 1 1 1{ , ( )}k k k kr p xπ − − − −= , according 
to [1, Sec.14.7], the recursion of the Bernoulli filter is as follows： 
Prediction: 
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Where kr  is target existence probability and ( )k kp x  is the spatial probability density of the target 
state. ( | )k k kY xη  denotes the likelihood function for a target originated measurement and kk  is the 
intensity of clutter (further details, see [1][4]). 

Notice that the Bernoulli filter described above that assumes a single sensor, according to [6], 
using the ‘iterated corrector approximation’ that the Bernoulli filter can be extended to multiple 
sensors system. The step of this algorithm is: use the measurements and the parameters of first sensor 
to calculate (1) (1){ , ( )}k k kr p x  via Eq. (3) and Eq. (4); use (1) (1){ , ( )}k k kr p x  as the prior, and then use the 
measurements and parameters of second sensor to calculate (2) (2){ , ( )}k k kr p x  via Eq. (3) and Eq. (4), 
and so on until we exhaust all of the sensors. Notice that the ‘iterated corrector approximation’ has a 
feature: changing the order of sensors will produces different track performance, and the performance 
largely depends on the detection probability of the last sensor. When the detection probability of the 
last sensor is low, the measurements from that sensor may be clutter (no target is detected), and then 
the algorithm may use clutter to update the Bernoulli RFS, which will produce poor quality and not 
satisfactory. 

3. The Multi-sensor Bernoulli Filter 

In this section, to solve the problem of the traditional MSBF (the ‘iterated corrector 
approximation’), this paper proposes a novel algorithm for the MSBF based on FISST. In the original 
Bernoulli filter, it is supposed that one target generates one measurement at each scan at the most. 
Since there is several sensors in the multi-sensor system, one target can generate several 
measurements at each scan form the different sensors. Therefore, the measurement model of the 
proposed MSBF is different from the original Bernoulli filter, and the likelihood function ( | )k k kY xη  
is the main difference between the proposed MSBF with the original Bernoulli filter. 
3.1 The RFS Measurement Model for Multi-sensor 

At time k, the collection of measurements of multi-sensor includes detection and clutter from 
different sensors, and it can be represented as a finite subset kY of the observation space nℜ⊆ ¡ . 
Suppose that there are n sensors, kx  represents the target state at time k, and the RFS measurements 
can be modeled as follows: 
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Where ,1 , ,( ) ( ) , 1, ,k k k i k k iY x x W i n= Θ = LU  is the measurements received by sensor i, , ( )k i kxΘ  denotes 
the measurement RFS from the target and ,k iW  is the RFS of clutter from sensor i, we assume that 

, ( )k i kxΘ  and ,k iW  are independent RFSs. ( )k kxΘ denotes the RFS of the union of the measurements 
form all the sensors generated by the target.  

The clutter ,k iW is modeled as a Poisson RFS with intensity ,k ik , and the measurement of the target 
received by each sensor , ( )k i kxΘ  is modeled as a Bernoulli RFS with parameters 

, ,{ ( ) |, ( | )}, 1, ,i
D k k k i kp x g x i n⋅ = L , where the probability of target detection for sensor i from a target with 

state kx  is given by , ( )i
D k kp x , and , ( | ), 1, ,k i kg x i n⋅ = L  denotes the likelihood function of sensor i. 

3.2 The Multi-sensor likelihood function 
In this section, we take two sensors system as an example to derive the multi-sensor likelihood 

function corresponding to the above RFS of measurements model. 
If the measurements follow the RFS model in Eq. (5), then the likelihood function that the state kx  

at time k  produces the measurement set kY   is given by Eq. (6).   
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Where ,1,
,( ) k i ky

i k k iK y e k k−=  is the probability density of clutter RFS for the sensor i. Every term in 
Eq. (6) has its physical interpretation. There are four groups of terms in the likelihood function of the 
MSBF. The first group represents none of sensors detected the target, the second and three group 
denotes only one sensor detected the target, the fourth group indicates two sensors detected the target. 
Notice that it can be easily extended to other multi-sensor systems, which is similar to the method 
used in [7] 

Proof: First, for the ith sensor, the probability mass of the RFS , ( )k i kxΘ  using the set integral [1, 
Sec.11.3] and probability density of Bernoulli RFS can be given by  
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Where iy  denotes the measurements received by the sensor i, , ,{ ( ) |, ( | )}i
D k k k i i kp x g y x  is the 

parameter of Bernoulli RFS. Since the , ( ), 1, 2k i kx iΘ =  are independent,  the probability mass of RFS 
( )k kxΘ  is Eq. (8).  
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Thus, comparing Eq. (8) with the function of set integral, we can get the probability density of 
( )k kxΘ  in Eq. (9).  
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From the RFS model in Eq. (5), we know ,1 ,( )k k k k nY x W W= Θ LU U U . Thus, substituting the Eq. 
(9) into the fundamental convolution formula [1, Sec.11.5], the probability density of the state kx  at 
time k produces the measurements set kY  can be obtained in Eq. (10). 
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Since the Bernoulli filter has no closed form solution, the SMC method is applied to implement the 
MSBF, which is similar to the method used in [5] (further details, see [5]).  

4. Numerical Simulations 

4.1 Scenario 
This section presents a single target tracking example to compare the SMC-MSBF’s performance 

with the traditional SMC-MSBF via numerical simulations.  
The target state is , , y, ,, , ,

T

k x k x k k y kx p p p p =  & & , where , ,( , )x k x kp p&  and , ,( , )y k y kp p&  denote the target 
position and velocity. The target dynamic is modeled by  

1
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0 0 0 1

k k k
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x x v
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 = +
 
 
 

                                                                                                             (11)  

Where  T  is the sampling interval and  kv  is zero mean white Gaussian noise with the covariance 
Q  
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In the tracking scenario, we assume that one target appears at scan k = 1 and disappears at scan k 
=60 with the initial target state 0x = (550m, −5 m/s, 300m, −8.5 m/s), the sampling interval is T = 1s 
and 2 2 -30.05m svσ = . There are two sensors in this tracking scenario, which located at [ ]

1
0;0Sp =  

and [ ]
2

100;800Sp =  respectively. 
This scenario uses range and azimuth measurements and defined as:  
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Where , ,,
i i

T

S x S yp p    denotes the location of sensor i, and kw  is zero mean white Gaussian with 

covariance 2 2diag[ ,  ]r θσ σ∑ =  ( 2.5mrσ =  and o0.25θσ = ). Clutter is modeled as Poisson RFS with 
the average number of λ =5 returns per scan. The surveillance region is the half disc [ / 2, / 2]π π−  
rad×[0, 1500] m, each sensor has the same reentry probability and target survive probability that are 
set to , 0.01R kp =  and , 0.95S kp = . We evaluate the performance using the optimal subpattern 
assignment (OSPA) metric (further details, see [8]).  
4.2 Simulation Results 

To evaluate the tracking performance of SMC-MSBF, we compare it with the traditional 
SMC-MSBF (the iterated-corrector approximation) over 100 Monte Carlo trials through two 
examples: the same detection probability and the different detection probability between two sensors, 
and the OSPA parameters are set to cutoff parameter c = 25m and order parameter p=1.  

1) The average of OSPA distance for same detection probability with two sensors (both Dp =0.7) 
is shown in fig. 1. The simulation results demonstrate that the SMC-MSBF provides more accurate 
position estimates than the traditional algorithm.  
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Fig. 1 Average of OSPA distance (the same detection probability with two sensors) 
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2) The detection probability of two sensors are Dp =0.5 and Dp =0.8 respectively. Due to the 
traditional SMC-MSBF based on the ‘iterated-corrector approximation’, we change the order of two 
sensors to evaluate the algorithms. The traditional SMC-MSBF include two cases: detection 
probability of last sensor Dp =0.5 or Dp =0.8. The average of OSPA distance for the different 
detection probability with two sensors is shown in fig. 2. The simulation results shows that the 
performance of SMC-MSBF is surpasses the performance of the traditional SMC-MSBF. Its OSPA 
distance is smaller than the traditional SMC-MSBF. Especially, when the detection probability of the 
last sensor is relatively low (the detection probability of last sensor Dp =0.5) in the traditional 
algorithm, the performance of proposed SMC-MSPF is more extraordinary. This is because the 
performance of traditional SMC-MSBF largely depends on the detection probability of the last sensor. 
When the detection probability of the last sensor is low, the target may often be undetected (all the 
measurements from this sensor are clutter), and using this measurements and parameters of the last 
sensor to update the Bernoulli RFS will produce a relatively large error. However, the proposed 
SMC-MSBF use the measurements of all the sensors at the same time to track the target, which is 
theoretically superior to the traditional SMC-MSBF. Also the performance of the proposed algorithm 
is invariant under sensor reordering. 
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Fig. 2 Average of OSPA distance (the different detection probability with two sensors) 

5. Conclusion 
In this paper, the MSBF, which tracks a single target using multi-sensor, has been proposed. The 

proposed MSBF is based on the theory of FISST, the FISST is applied to derive the multi-sensor 
likelihood function, and the SMC method is used to implement the MSBF algorithm. Simulation 
results show that the proposed MSBF can track a single target effectively, and the proposed MSBF 
shows excellent performance compared with the traditional MSBF.  
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