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Abstract. Joint surfaces widely exist in mechanical assembly structures, the local stiffness and 
damping have important effect on the whole dynamic analysis of the structure. In this study, proposed 
a normal contact damping forecast model and analyze its damping characteristics, based on the 
microcosmic mechanism between joint surfaces and citing the domain extension factor and unit area 
radio, combine with the modified fractal theory and energy dissipation. The simulation results show 
that the damping characteristic curve appear inflection point when the fractal dimension value D is 
1.428. When, the normal contact damping increases with the increase of fractal dimension but 
decreases with the increase of contact area. When, the normal contact damping increase with the 
increase of contact area .Since the reaction of real contact area is relate to the change of the load, the 
relationship between the normal contact damping and the contact area can accurately predict the 
performance of assembly structure to a certain extent, the existence of the inflection point also 
provide a reference for the optimization design of assembly structure. 

1. Introduction 

Joint surfaces is the assembly structure main source of nonlinear damping, it has very important 
influence on the dynamic behavior of the whole structure, joint surface cannot be ignored in the study 
of the mechanical structure dynamic characteristics.[1]. Under normal circumstances, the joint 
surface contact damping accounted for more than 90% of the total structure damping [2], compared 
with mechanical parts itself, the joints contact damping the dominant element. It has important 
significance in the whole assembly structure dynamics analysis and structure optimization design by 
researching joint surface contact damping. Due to the contact problem between the rough surfaces is 
nonlinear and complicated, the joint surface contact damping parameters usually got by the method of 
experiment to identify, in the former studies. [3-4], with the development of fractal contact theory 
application in rough surface [5], researchers began to expand the research field of fractal contact 
model in the field of bolt joint dynamic characteristic. References [6-8] researched the joint surface 
contact stiffness contact damping based on two-dimensional fractal surface, and the corresponding 
fractal model is established. In this paper, a normal contact damping forecast model is established, the 
influence of surface parameters on the normal contact damping is also analyzed by digital simulation. 
The simulation inflection point value is bigger than the reference result which is 1.42 [9]. 

2. Fractal contact theory and micro-contact model 

2.1 Fractal contact theory  
The contact of two rough surfaces can be equivalent as a rough surface contact with a rigid plane. 

On the micro scale, the rough surface is composed of a large number of asperities, and the shape of 
the rough peak is usually oval.  Since the oval contact region size is far less than the radius of 
curvature of itself, the single rough peak can be approximated as sphere. 

When two joint surfaces contact and squeeze each other, the higher asperity on rough surface will 
be the first to occur deformation, as shown in figure 1.A single asperity contact with the rigid surface 
is shown in figure 2: 
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Fig.1 Rough surface contact with the rigid flat Fig.2 Asperity elastic contact with the rigid schematic 

flat 

The rough surface profile is random and disordered, performance continuous, no differentiable 
and statistically self-affine properties in mathematics. The Weierstrass-Mandelbrot function which 
satisfies all of the above properties can be given as [10]: 
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Where the parameter D  is the fractal dimension, G  is the fractal roughness parameter, 
n determines the frequency spectrum of the surface roughness, L  the length of the sample. 
Wang and Komvopoulos [11] introduced the domain extension factor   for micro-contact size 

distribution function, and obtained the ratio of the maximum real contact area la  for one single 

asperity of joint interface to total real contact area rA . The more accurate size distribution function of 
micro-contact was given as: 
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Where a  is the truncated area of micro-contact, la  is the largest truncated area of the 

micro-contact,   is the domain extension factor, which is a function of fractal dimension and can be 
given as 
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The asperity interference   for the micro-contact with the truncated area a  can be expressed as 
( 1) '(2 )/2D DG a                                                                                                                        (3) 

The equivalent asperity curvature radius of the micro-contact R  can be express as 
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2.2 Micro-contact model  
The classic Hertz elastic contact theory is based on the assumption of contact area small 

deformation and no friction, and each asperity is treated as elastic half space and do not consider the 
interaction between each other. [12] The elastic deformation of a single asperity under normal force is 

* 1 2 3 24

3
P E R                                                                                                                                (5) 

Where E  represents the equivalent elastic modulus of the contact materials, satisfied 
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      , and 1E , 1 and 2E , 2  are the elastic modulus and Poisson's ratio of 

rough surface and rigid surface, respectively. 
The pressure of the single asperity increase with the increase of load between two surfaces, and 

even lead the asperity to be yield. The critical interference c , critical contact radius cr  and the 

critical load of inception of plastic deformation cP  , was defined by Chang et al. [13] by using the von 

Mises yield criterion. The resulting equation is 
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Where H  represents the hardness of softer material, K is the coefficient of hardness, which 
satisfied 41.0454.0 K , and   is the Poisson's ratio of softer material. 

   Kogut and Etsion (2004) quantitatively distinguish the contact deformation through the 
dimensionless deformation * . Where, *  is the ratio of asperity deformation   and critical 
interference c . The relationship between the the micro-contact normal load and the contact 

deformation can be expressed as follows [14]  
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   Since the KE model obtained the final equation by using the curve fitting based on the finite 
element data, the fitting curve on the elastic-plastic boundary is discontinuous. 

   To solve this problem, Brizmer et al.[15] investigated the effects of the contact conditions 
(frictionless or fully-adhered) and material properties on the normal contact (the material Poisson's 
ratio under 0-0.25 and 0.2-0.5 conditions), the relationship of contact parameters and normal contact 
load, (Poisson's ratio under and 0.2-0.5 condition), can be expressed as 
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Where,  089.013.10-88.8 2  cl  ,  125.025.0   ,  0586.083.7-82.6 2   c , 

 08.0174.0  . 

3. The normal contact damping predict model for joint surface  

When the joint surfaces contact each other under the normal load, the asperity on the rough surface 
occurs deformation. If the asperity contact area more than the critical contact area, the asperity store 
elastic strain energy, which show the stiffness characteristic. The asperity occurs plastic deformation 
and dissipation energy when its contact area does not exceed the critical contact area, and show the 
damping characteristic. 

Substituting Eq. (4) into (6) yields 
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The critical truncated area of asperity can be expressed as (when c  ) 
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According to Eqs. (3) and (11), the ratio of asperity deformation   and critical interference c  
can be obtained as 
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The relationship of normal contact force eP  and contact parameters under elastic stage can be 

yield according to Eqs. (10, 8, 4 and 13) 
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The normal contact stiffness nk  for each elastic micro-contact can be written as 
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The whole normal stiffness NK  of contact surface can be given as 
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According to Ref.[11], the ratio of real contact area Ar  and nominal contact area Aa  can be 

expressed as     
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Substituting Eq. (17) into (16) yields 
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It occurs elastic deformation for micro-contact when ca a  , the elastic energy of a single asperity 

can be expressed as 
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The elastic energy of contact surface can be obtained by integrating Eq. (19) as follow 
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When ca a  , the asperity occurs plastic deformation. The plastic energy of one micro-contact 

under plastic force pP  is given by [16] 
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The whole dissipation of energy in plastic contact region can be obtained as 
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The normal contact damping dissipation factor can be obtained as 
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The normal damping of contact surface can be written as  
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Where, M is the mass of the structure. 
Substituting Eq. (17) into (24) yield 
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4. Numerical Simulation 

As Ref.[17], the fractal dimension and fractal roughness parameter of nodular cast iron (Material 
type is QT600-3 in China) with roughness 1.6aR m  can be calculated as 

1.42D  , 101.21 10G   ,respectively. The property parameters of the contact material are 
150E GPa , 196H HB , 3.0 , the shear modulus is 107Gpa, unit area 

2610 mAa  , , KgM 5.2 . Corresponding to the value of D , the domain extension factor can be 
found in Ref.[11],which is 067.2 .  

Substituting parameter values into Eq.(25), the relationship of normal contact damping and the 

ratio of real contact area and nominal contact area ( arr AAA  ) can be shown in the fig.3 
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Fig.4 Relationship between normal damping and ar AA      Fig.5 Influence of the fractal dimension 

   Change the value of the fractal dimension D , the effect on the normal contact damping as shown in 
fig.5  
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Fig.6 inflection point appear at 428.1D          Fig.7 Influence of fractal roughness parameter 

With the increasing of fractal dimension, there is a inflection point appear at 428.1D  in the 
simulation. When 428.1D , the relationship between normal contact damping and area ratio (

ar AA ) 

is convex arc nonlinear, and can be shown in Fig.6. The effect of the fractal roughness parameter also 
can be shown in fig.7.  
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5. Conclusion 

When 428.11  D , the normal contact damping and contact area ratio show a concave arc nonlinear 
relationship, and the normal contact damping decrease with the increase of contact area, increase with 
the increase of fractal dimension. When 2428.1  D , the normal contact damping and contact area 
ratio show a convex arc nonlinear relationship, and the normal contact damping increase with the 
increase of contact area, increase with the increase of fractal dimension. 

Fractal roughness parameter G is nonlinear relationship with the normal contact damping, and 
when the fractal roughness parameter increase, the greater the joint surface normal contact damping 
is. 

The emergence of inflection point provide a reference for the calculation of damping and the 
optimization design of the contact parameters.  
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