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Abstract. In this paper, a probabilistic model checking method for mobile robots path planning 
problem is proposed. Since surroundings always affect the behavior of mobile robots, four main 
environmental factors are analyzed as influencing parameters. With the map built by randomized 
sampling-based method, we model the uncertain motion behavior as a Markov Decision Process 
(MDP). Meanwhile, the properties are described in PCTL (Probabilistic Computation Tree Logic) 
which can be used to describe rich mission specifications. Then the path planning problem is mapped 
to the problem of generating an MDP control policy that maximizes the probability of accomplishing 
the mission objective satisfied a PCTL formula. We apply the PRISM platform to analyze model and 
verify properties. Our approach is demonstrated with illustrative case studies. 

1. Introduction 

Path planning is an important research foundation of the basic application in robot control system, 
so it has always been a research focus in this field, and a lot of research achievements have been made. 
Path planning problem is to search an optimum motion path for a collision-free path that connects a 
given start and goal configuration while satisfying constraints imposed by complicated obstacles 
[1-2]. Most of the robot's working environment is dynamic and uncertain environment [3], so this 
paper is based on a static global path planning, we propose a dynamic obstacle collision avoidance 
strategy. Upon completion of the robot global path planning based on the information on static 
obstacles, dynamic collision avoidance prediction, and then the local collision avoidance planning. 

There has been an increased interest in applying tools from automata theory and formal 
verification for planning and control of mobile robots, and have achieved significant achievements in 
practical application [3-4]. For example, in paper [5-6], the motion planning problem is formulated as 
a Constrained Markov Decision Process with mission specification to control a vehicle in a dynamic 
and threat-rich environment. Paper [7] constructs probabilistic models for mobile robot motion 
planning as the uncertainties is from the impact of sensor and actuator noise. And in paper [8], by 
considering the environment in which the dynamic nature comes from doors that can open or close, 
an MDP is modeled to find a control strategy. However, in all above papers the method of building 
roadmap is based on the way of partitioning the environment into polygonal regions. It will require 
the whole divided polygon to have the same properties, which is unfavorable to fully describe the 
environmental conditions. As a result, in this paper a randomized sampling-based method is used to 
express the robot free space as a large number of sampling points. Differing from most path planning 
methods, we apply temporal logic language to describe the task. In the general path planning problem, 
a mission objective remains simple as given as “go from A to B and avoid obstacles”, where A and B 
are two regions of interest. However, a mission might require the attainment of either C or D, visiting 
regions sequentially, or the satisfaction of more complicated temporal and logic conditions about the 
reachability of regions of interest. So we use Computation Tree Logic (CTL) to meet the demand of 
expressing tasks diversely.  
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high level with probabilistic model checking method, which are corresponding to the abstract 
behaviors of robot moving from one point to its adjacent point. By using PRM algorithm, the low 
level planner will generate the physical trajectories and drive the motion of the robot through regions. 

3. Construction Probabilistic model 

3.1 Randomized Sampling-based Method 
The roadmap of environment should be built before modeling. A randomized sampling-based 

method is used to build the environment map with reference to the path planning algorithm PRM [12]. 
The environment is a two-dimensional space containing a number of obstacles, denoted as Z. The 
whole environment is removed obstacles and edge regions as free configuration space denoted as Zfree, 
in which robot can free to move. We do not consider the dynamic constraints of mobile robot, 
regarding it as a point. The main work at this stage is to build a probabilistic roadmap G, which is a 
random network representing the free space Zfree.  

Probabilistic roadmap is an undirected graph, denoted as G = (Ga, Ge). Ga is a set of points 
obtained by random sampling robot positions in Zfree. Ge is a set of edges from the local planner 
which is used to establish connections for each node in Ga by finding their neighbor nodes. Here is 
the method of local planner. 

Firstly, a point is selected from the entire environment. Then we apply the collision detection 
program to detect the position of this point. If it is in the threatened area, the point will be deleted. If 
this point belongs to the free space, it will be added to the roadmap. 

Try to add the new points to the roadmap, repeating the cycle until the roadmap is complete. 
3.2 Probabilistic Analysis 

In this section, we will introduce four environmental factors that may affect the behavior of robots. 
Firstly we consider the size of active areas as a factor that will affect the robot behavior. Nurse 
assistant robots mostly realize the self-localization by recognizing the doorplate numbers based on 
the visual navigation combining with RFID technology [13]. In addition, studies show that the greater 
the number of obstacles in activity area the more efforts robots need to spend to avoid collision. While 
the regional saturation (crowd level) is larger, it will lead to more serious conflict between the robots 
and obstacles, or even deadlock occurred. Four environmental factors are shown in Table 1. These 
parameters contain two discrete variables: the number of rooms n and the size of active area r, 
n,r [1,2,3] , where the values are proportional to the room numbers and area sizes. And two continuous 
variables: the regional saturation q (0.20,0.80) and the number of obstacles o (0,50) . 

Table.1. Environmental Parameters 
Factors Parameters values 

Room Numbers n 1 2 3 
Active Area Size r 1 2 3 

Obstacle Numbers o 
0-50 

(continuousvariable) 

Regional Saturation q 
0.20-0.80 

(continuous variable) 
Here are the main steps how to calculate the transition probability from the four parameters in table 

1. 
1) After the randomized sampling-based method, the environment is divided into a large number 

of points N
i=1Ga= iGa . Then the values of four parameters corresponding each point are obtained. The 

whole map is transformed into a set of points which are defined different attributes. 
2) Then we sample the robot behaviors under different environmental parameters. As a result, the 

sample set is formed. 
We calculate the transition probability P by the regression equation as shown in Formula.1. 
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aj and βjk are the regression intercept and regression coefficient calculated by Logistic regression 
model. x is the explanatory variable as shown in Table 1 and k is the number of explanatory variables. 
P(y=j/x) is expressed as conditional probability and y is a function of x. j is the category of response 
variables and j=1,2,3 are the variable values when the robot performs the motion behavior correct, 
wrong and failure respectively. j=1 is the dependent variable. 
3.3 Construction of an MDP Model 

We now describe the construction of the MDP. The MDP has the form 0M=(S,s ,Act,R,Steps,L) , 

where: 
1) i i iS={L ,W ,E }is a finite set of states. Li=Gai is a subset which is one-to-one correspondence to 

the nodes in roadmap. Wi represents an intermediate state that the model reaches by mistake instead 
of the initial planning state. Ei is a state that the model reaches when the failure navigation or 
deadlock is occurred. 

2) { _ , _ }Act Goi j Losei j is a set of actions, where i is the subscript of current state and j is the 

subscript of next state. _Act Goi j is the corresponding action of MDP when robot moves from node 

Gai to Gaj. _Act Losei j is the action that MDP model applies when robot moves to other nodes 

instead of the target. 
3) R R( (x , ), ( , ))i i i j j jGa y Ga x y is the action cost. In this paper, we define the cost of action is only 

related to the length between two transferred points. 
4) ,( , , '), : { }corr wrong failSteps T s a s a Act T P P P   ， is the set of probability values corresponding  to 

the motion performed correctly, wrong and failure, respectively. When Act=Goi_j is applied, the 
value of transition probability is determined by the environmental parameters of current point and the 
next transferred point as shown in Table 1, denoted as ( , ) / / ( ( , , , ), ( , , , )).i j corr wrong fail i i i i i j j j j jP P Ga n r o q Ga n r o q  

In particular, when the wrong motion behavior is happened, Act=Losei_j is applied and the value of 
( , , )wrongP i j k containing three parameters is determined by the environmental factors of all its 

neighbors. 
5) L= {Home, Goal, Service, Room1, Room2} is the set of labelling. 
As an example, consider the environment depicted in Fig. 3. The map is denoted as G = (Ga, Ge), 

where Ga= {Gai}, i∊[1,6] and Ge contains ten edges as two-way connected. To illustrate how the 
MDP is modelled, a fragment of MDP is only considered Ga1->Ga2->Ga5 path (from Fig. 3) as 
shown in Fig. 4. As indicated in the figure, the probability of applying Act=Go1_2 at Ga1 node and 
ending up at Ga2 when the motion behavior is performed correctly is Pcorr(1,2)=0.867, when the 
motion behavior is performed wrong is Pwrong(1,2)=0.103, and the probability value is 
Pfail(1,2)=0.03 when failure is occurred. In addition, when the wrong behavior is happened, 
Act=Lose1_2 is applied. As a result, adjacent regions Ga3 and Ga4 will be reached with probabilities 
Pwrong(1,2,3)=0.381 and Pwrong(1,2,4)=0.619. Of particular note is Pwrong(i,j,k) means the 
probability when the robot want to move from node Gai to Gaj but is wrong arrived at Gak. The value 
is determined by the environmental factors of all adjacent regions of Gai except Gaj. Actions Go2_5 
and Lose2_5 are applied as the same and not explained here. 

 
Fig. 3. Branch of roadmap 
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5. Dynamic obstacle avoidance strategies 

In the previous section, the plan by the probability of detection methods meet global path attributes 
to ensure minimal impact on the robot. But in the process of moving the robot might encounter at any 
direction and trajectory of dynamic obstacles are not clear, so the robot motion process each line 
further, we must continue to use environmental information within the sensor detection field of view, 
and to distinguish the static obstacles and dynamic obstacles, if detected dynamic obstacles, you need 
to detect its direction, speed and trajectory, and then use the appropriate method for dynamic obstacle 
avoidance [7]. 

In the robot's motion environment, due to the static obstacles easily coordinate mapping, is 
generally regarded as known information, but it is uncertain dynamic obstacle information. The 
purpose of this section is to ensure that the path planning robot collision avoidance under the premise 
to meet the optimum path along a moving target task. The basic principle of dynamic obstacle 
avoidance in this paper is to perform global path planning by a known environmental information, 
and real-time obstacle avoidance way of combining operations. Rely on internal geometry or 
topology robot saved maps and other information about the environment, on the basis of pre-planning 
a route on a global, dynamic obstacle avoidance method for robot navigation. 

Assumption that the robot at any time based on the detected current position as environmental 
information center, r is the radius of the region, the rate of movement of the robot is Vr; robot in 
two-dimensional plane distribution of the static obstacles finite and limited dynamic obstacle objects, 
dynamic trajectory and direction of the obstacle is unknown, but assuming that all movement locus of 
the moving obstacle is unidirectional, non-self-intersecting smooth trajectory, and within the 
detection range of the robot is approximated as a linear motion direction of the same . 

The specific method is divided into three steps: Scene forecasts, collision detection and collision 
avoidance local detour, described in detail below.  

1) Scene forecast period: continuous detection robot obstacle information within the field of view, 
if detected in time ti dynamic obstacles, measured obtaining the coordinate position, and then after a 
short time of ᇞt measured position. Then, using Equation (2) estimating the moving speed of the 
obstacle, using the equation (3) the calculation of the field of view obstacles the robot trajectory is 
approximately linear.  

( ( ( ), ( ), ( ( ), ( ))) /d dv d p x t t y t t p x t y t t     (2) 
The linear equation y = kx + c, where  

( ( ) ( ) / ( ( ) ( ))
( ) ( ) / ( ( ) ( ))

k y t t y t x t t x t
c y t x t x t t x t




    
   

(3) 

2) Collision detection phases: collision safety distance threshold hypothesis D is considered an 
obstacle to the robot and dynamic volume obtained after informed by Step one obstacle at the moment 
ti trajectory moves along at a speed of formula (3), you can predict it in the location and coordinates 
different times,, k = 1,2,3 ... N. Then, we follow the movement and speed Vr step Lr virtual robot 
forward, time tr reach the edge of the visible range of the robot, so, write T = {ti, ti + ᇞ t, ti + 2 ᇞ t, ..., 
tr}, robot location of the collection is a virtual walk. Finally, according to the formula (4) is 
determined in the process of moving the robot at any time ᇞt is a collision occurs, the condition 
satisfies the equation, denoted by P(tc), led by the collision prediction point. Arbitrary, detection 
formula as (4), if a collision is forecast to be carried out in accordance with Step Three collision 
avoidance detour local planning.  

( ( ), ( )) , ,
( ( ), ( )) , ,

d r

d r

d P t P t D t t t T
d P t P t D t t t T

  
  

 (4) 

3) Local Bypass collision avoidance stage: This stage is mainly to avoid dynamic obstacles and 
take the local planning stages of a temporary planning a detour path, when the robot avoid obstacles 
will go back to the original dynamic planned global on the path. Collision avoidance planning method 
steps, the prediction obtained in step two collision points recorded as a collection of Co, and in order 
to prevent the error affected the collision point of the collection to the former path, after moving a 
point respectively; then modify the collection the value of all property as an obstacle collision point, 
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