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Abstract. In this paper, first, a new predictor-corrector method( called the modified predictor-
corrector method ) for the fractional differential equations is developed. And the new method can be 
formally viewed as a modification as the classical predictor-corrector method. Second, it is proved 
that the numerical accuracy of this new method  is superior to that of the classical predictor-
corrector method by two numerical examples. The comparison with the corresponding results 
demonstrates that the modified predictor-corrector method is more accurate than the classical 
predictor-corrector method when solving fractional differential equations numerically. 

Introduction  
In recent years, fractional calculus has got dramatic advances in both theory and application.  For 

the no local property, the fractional calculus has been used to  describe the basic nature of almost all 
sciences and engineering fields, such as fluid flow in porous materials, anomalous diffusion 
transport, acoustic wave propagation in viscoelastic materials, dynamics in self-similar structures, 
signal processing, financial theory, electric conductance of biological systems and so on[1]. 

However, the development process of numerical algorithm of fractional differential equations is 
slow at work. In 1986, Lubich[2] firstly promoted the BDF into the numerical calculation of the 
fractional differential equations and gained the form of the fractional BDF. And in 1993,Lubich and 
Ostermann[3] gained a high order approximation scheme for solving the fractional differential 
equations. And in 1998-2002 Diethiem[4-5]pointed an Adams-type predictor-corrector method for 
the numerical solution of fractional differential equations and the corresponding error analysis. In 
2006, Odibat[6]presented an algorithm to numerically approximate the fractional integration and 
Caputo fractional differentiation. In 2011, Li, Chen and Ye[7] proposed some high-order numerical 
approximations for fractional integrals based on cubic Hermite interpolation and cubic spline 
interpolation. In 2013, Gao[8] proposed a method to approximate the Caputo fractional derivative 
by the quadratic interpolation. 

The plan of the remainder is as follows. In Section2, a new Adams-type predictor-corrector 
method( called the modified predictor-corrector method ) for the fractional differential equations is 
developed. In Section3, one test examples are used to confirm the numerical accuracy of the new 
method. The computational results are compared with the corresponding ones with the classical 
predictor-corrector method. Finally, a brief conclusion and the further work have been listed. 

2. Derivation of the modified predictor-corrector method  
In this section, we will describe the classical predictor-corrector method and the process of the 

derivation of the modified predictor-corrector method in detail. Consider the fractional differential 
equation with initial conditions 
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Equation (2.1) is equivalent to the Volterra integral equation 
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Set  , , 0,nh T N t nh n= = ≥  then Eq.(2.2) can be written as  
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The error is ( ) ( ) ( )0,1, ,max p
j N j h jx t x t O h= − = , where ( )min 2,1p α= + . 

Then the  representation of the modified predictor-corrector method is 
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the ( )MP
1h ny t +  is obtained by using ( ) ( )( )n n nf t f t t t′+ −  as the approximation of  the integrand 

( )f t  on small interval [ ]( )1t , t 1n n n+ ≥ . The representation of ( )MP
1h ny t +  is  
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And ( )nf t  and ( ) ( )( )n n nf t f t t t′+ −  are respectively corresponding first order and second 

order in Taylor series. According to Taylor’s theorem, the higher approximation of  ( )f t will reach 

higher accuracy. Then we can make a conclusion that the modified predicted value ( )MP
1h ny t +  in 

(2.7) is with higher accuracy than the predicted value in  (2.3).  
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3.  Numerical examples 
In this section, the validity and numerical accuracy of the modified predictor-corrector method 

(2.7) are demonstrated by one test examples. Meanwhile, the corresponding computational results 
with the classical predictor-corrector method (2.5)are given for contrast. 

Let 0h T N= and denote that ( )ny t indicates the exact solution at nt t= , ( )1
h ny t and 

( )2
h ny t respectively indicate the numerical solution got by the classical predictor-corrector method 

and the modified predictor-corrector method and ( )ny t is the exact solution., and 
( ) ( )1

1 ( )N
N h NE h y t y t= − ， ( ) ( )2

2 (h)N
N h NE y t y t= − . 

Example 3.1  
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where 0 2α< < and the initial conditions are ( )0 0y = ， ( )0 0y′ = .The exact solution of this initial 

value problem is ( ) 8 4 2 93
4

y t t t tα α+= − + . 

Taking different temporal step sizes, 1 100h = ,1 400  ,1 1600  , we compute the example by the 
classical predictor-corrector method and the modified predictor-corrector method, respectively. 
Table 1 lists the computational errors at 0 0.6Nt T= =  with different parameters 0.9,0.75,0.5α = . And 
the absolute errors curves and solution curves with 0.75α = , 600N = , 1 1000h =  is presented in Fig.1. 
From the results presented in Table 1 and Fig.1,  we find that the computational errors by the 
modified predictor-corrector method (2.7) are obviously much smaller than that by the classical 
predictor-corrector method (2.3). 
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Fig. 1.The absolute errors and solution curves with 0.75α = , 600N = , 1 1000h = . 

Table 1(example 3.1) Computational errors with different temporal step sizes. 
 

α  h  1 ( )NE h  2 ( )NE h  
0.9 1/100 2.5731e-004 6.52632e-005 

 1/400 
1/1600 

 

1.7493e-005 
1.21059e-006 

3.72349e-006 
2.22915e-007 

0.75 1/100 3.50281e-004 9.25708e-00 
 1/400 

1/1600 
2.9842e-005 
2.6067e-006 

1.68487e-008 
2.80132e-009 

 
0.5 1/100 1.26753 e-003 1.19484e-006 

 1/400 
1/1600 

1.46559 e-004 
177025e-005 

1.02271e-006 
134997e-007 
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Conclusion 
In this paper, a modified predictor corrector method for the fractional differential equations is 

developed. As what we have seen, the computational results of  the modified  predictor corrector 
method are superior to that of the classical predictor corrector method. And the modified predictor 
corrector method can also be used for numerically solving many other fractional differential 
equations with the Caputo derivatives. However, in this paper, there is only modification in the 
prediction part,  which limiting the  accuracy of the modified predictor corrector method. And in the 
future, efforts will be paid on the modification in the correction part, such as applying higher 
Lagrange interpolation instead of the linear interpolation to improve the accuracy. 
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