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Abstract. In this paper, a novel SIRS model of rumors on scale-free network with time delay is 
proposed. The basic reproductive number for the model is presented. We prove that the rumors will 
die out when the basic reproductive number is less than the unity. Whereas the permanence of the 
rumors is shown if the basic reproductive number exceeds the unity. Numerical simulations 
confirmed the analytical results. 

I. Introduction 
Rumors are nearly as old as human history, but with the rise of the Internet, they have become 

ubiquitous. In the new media age, social rumor that spread through the Internet has become a typical 
public problem in the field of public administration. There are often times when destructive rumors 
can cause social panic and even huge economic loss [1]. As such, governing of internet rumors is a 
common challenge confronting the international community at present. As China is entering a critical 
period of social transition, increasing social conflicts call for an effective governance to prevent the 
spreading of online rumors from threatening social stability. The study of rumor spreading has 
important theoretical as well as practical implications. 

A classic rumor model is the DK model proposed by Daley and Kendal in 1965 [2]. In their model, 
the population of interest is divided into three groups: people who know and spread the rumor, people 
who do not know the rumor and people who know but do not transmit the rumor. Then Maki and 
Thomson [3] modified the DK model into the MT model, which assumes that a spreader changes to a 
stifler (who knows but does not transmit the rumor) once s/he contacts another spreader. 

Based on these early models, many researchers carried on the study of rumor spreading [4] and 
related it to the topological properties of social networks [5]. Besides, Zanette [6] studied the rumor 
spreading model on small-world networks and found the existence of the critical threshold for rumor 
spreading. Moreno et al. [7] examined the dynamics of rumor spreading on scale-free networks. 
Isham et al. [8] analyzed the final distribution size of rumors on general networks. 

However, most previous works mainly focus on the impact of the underlying topology and assume 
that the transmission is uniformly distributed among all links, that is, each individual will try to 
contact all its neighbors once within one time step. In fact, this kind of uniform transmission is 
induced from the assumption that each node’s potential infectivity, counted by its possible maximal 
contribution to the propagation process within one time step, is strictly equal to its degree. However, 
there are still many real spreading processes, which cannot be rightly characterized by this 
assumption . In epidemic contact networks, the super-spreader has many acquaintances; however, 
he/she could not contact all his/her acquaintances within one time step .  

In this paper, we aim to overlook the above defects and understand the spreading behaviors of 
rumors in Internet. We present a novel SIRS epidemic model of rumors to investigate the impact of 
nonlinear infectivity in Internet with the scale-free property. We obtain the corresponding spreading 
threshold and analyze the globally dynamic behaviors of the rumors. Then, the numerical simulations 
are given, which are well consistent with the theoretical results. 

The remainder of this paper is structured as follows. In Section 2, we will briefly formulate this 
novel epidemic model. Then in Section 3, we determine the threshold value and analyze the globally 
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dynamic behaviors of the rumors. In Section 4, we carry out extensive numerical simulations to verify 
the theoretical analysis in Section 3. At last, in Section 5 we summarize this work. 

II. Model formulation 
It is well known [9] that the node degrees of Internet asymptotically follow a power law 

distribution, ( )P k k γ−� , where ( )P k  stands for the probability that a node chosen randomly from 
Internet is of degree k . For this model in Internet, each individuals is represented by a vertex of the 
network and the edges are communication links between them, along which the rumors may spread. 
Furthermore, the nodes can only exist in three discrete states, i.e., susceptible (S), infected (I) and 
removed. Susceptible ones are those who have never heard of the rumor and can be easily infected by 
the rumor with probability ( )kλ . Infected ones comprise individuals who have heard of the rumor and 
will spread it to others with probability p . A infected individual may forget the rumor and switch his 
state to susceptible after time τ . τ is the average infected period. Removed ones are those will not 
spread the rumor any more. The removed individual turns into a susceptible one with probability µ . 
Let ( )kS t , ( )kI t  and ( )kR t  be the densities of susceptible, infected, and removed vertexes of degree k  
at time t . Obviously, they must satisfy the normalized condition ( ) ( ) ( ) 1k k kS t I t R t+ + = if the total 
number of the node is fixed. All parameters are positive. Then by applying the mean-field technique 
to the above assumptions, we have the following dynamics model based on delay differential 
equations 
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( )tΘ  denotes the probability from any given link to an infected node. It satisfies the relation 
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( )kϕ denotes the nonlinear infectivity related with the degree of an infected node, where 
( ) 1k k bkα αϕ α= + , 0 1, 0, 0a ba≤ ≤ > ≥ [15]. k  is the average degree within the network. 

III. The analysis of the model 

Let 

                                                                         0
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Theorem 1. There is always a rumors-free equilibrium { }0 (1,0,0) kE for system (1) and when 

0 1R < ; system (1) has a unique endemic equilibrium * * *
*( , , )k k kE S I R , * * *, ,k k kS I R denote the densities of 

susceptible, infected, and quarantined vertexes of degree k ( 1,2,k n=  ) respectively when the 
system arrives at a stationary state. 

Proof. It is easily verified that 0E is always an equilibrium of system (1). 
Transform the third equation of system (3) into the following integral form 
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To get the equilibrium solution *E we need to make the right side of system (1) equal to zero. Then 
the equilibrium *E should satisfy 
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where 
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Solving Eq.(4) yields 
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Substituting Eq.(6) into Eq.(5), we can obtain the self-consistent equation about *Θ as follows 
*
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Apparently, * 0Θ = is always a trivial solution, which denotes the rumors-free state. Therefore, a 
nontrivial solution exists provided 
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a nontrivial solution exists if and only if (0) 0f < , i.e., 0 1R > . 
Substituting the nontrivial solution of ( ) 0f Θ = into Eq.(6), we can get *

kI . By Eq.(4) and (6), we can 
easily obtain that 

* * *0 1,0 1,0 1k k kS I R< < < < < <  

Therefore, the equilibrium *E is well-defined. Hence, when 0 1R > , one and only one endemic 
equilibrium of system (1) exists. This completes the proof. 

IV. Numerical simulation 
Extensive numerical simulations are carried out on BA scale-free model to demonstrate the above 

mentioned theorems. The degree distribution is ( )P k ck γ−= , and constant c satisfies
1

( ) 1n

k
P k

=
=∑ . 

Here we set the maximum degree 100n = , the minimum degree 1m = . 

 
Figure 1: Evolutions of 10 ( )I t , 55 ( )I t , 85 ( )I t , for the system (1) with condition 0 1R < . 

Consider system (1) with parameters 0.2λ = , 0.3µ = , 2τ = , 0.2p = , 6a = , 1b = , 0.6α = , which runs 
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on a scale-free network with 2.5γ = . Then 0 0.453 1R = < . For a set of initial conditions satisfying 
(0) 0.001kI = , (0) 0.999kS = , (0) 0kR = , Fig. 1 shows the evolutions of 10 ( )I t , 55 ( )I t , 85 ( )I t , from which it 

can be seen that rumors will tend to extinction, in agreement with Theorem 1. 
Consider system (1) with parameters 0.5λ = , 0.3µ = , 2τ = , 0.2σ = , 6a = , 1b = , 0.6α = , which runs 

on a scale-free network with 2.5γ = . Then 0 1.373 1R = > . For a set of initial conditions satisfying 
(0) 0.001kI = , (0) 0.999kS = , (0) 0kR = , Fig. 2 shows the evolutions of 10 ( )I t , 55 ( )I t , 85 ( )I t , from which it 

can be seen that rumors will tend to extinction, in agreement with Theorem 1. 
 

 
Figure 2: Evolutions of 10 ( )I t , 55 ( )I t , 85 ( )I t , for the system (1) with condition 0 1R > . 

V. Conclusion 

In summary, to better understand the effect of the time delay on the spread of rumors, we introduce 
a novel SIRS model capturing the epidemics of rumors in Internet with scale-free networks property 
which includes the nonlinear infectivity and infection delay. The spreading threshold for the model 
has been determined. These results help to work out policies of inhibiting rumors. 
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