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Abstract. Cyclostationary statistical characteristic is the main theory of studying non-stationary 
periodic signal. Signal and noise are always assumed that obey Gaussian distribution model in 
traditional signal’s processing. As the environment of non-Gaussian pulse is increasing complex, 
degradation problems of system performance can be solved by building α stable distribution theory 
model. Firstly, this paper introduces the α stable distribution to estimate FSM cyclic spectrum and 
proposes cycle spectrum analysis under discrete signal. Then, the verification is given by taking AM 
communication signal on Matlab platform. The results show that in a complex environment, the 
low-level FSM algorithm which is based on α stable distribution has better performances on 
robustness and noise immunity. Finally, the algorithm proposed in this paper is applied to construct 
characteristic parameter, which is important for blind signal separation and identification. 

Ⅰ.Introduction 

As the Gaussian assumption based on the central limit theorem conform to the normal situation, 
and its description is simple, analysis and processing are also convenient, many principles and 
methods of traditional research areas are often assumed to be Gaussian model, such as signal 
characteristic analysis, signal filtering, parameter estimation and detection, system identification etc., 
and Gaussian distribution model is always popular in the field. But in practical applications, the 
signals we meet are often been accompanied by some noises which have low probability and loud 
magnitude. If we use a Gaussian distribution model to describe such processes, the signal processor’s 
performance will be significantly degraded for the noise cannot match with the model well. Therefore, 
we have to consider using non-Gaussian signal noise model and design a processing system, so as to 
make them in line with signal’s noise characteristics better. 

α stable distribution is a kind of generalized Gaussian distribution[1-3], and it is also a distribution 
that can satisfy generalized central limit theorem. It becomes the most potential and attractive model 
to describe random signals which have more significant spike pulse waveform and thicker tail 
probability density function for its better robustness performance. α stable distribution can describe 
various degrees of impulse noise, which is based on setting different characteristic parameters, no 
matter the noise is symmetrical or asymmetrical. This article promotes the FSM algorithm to α stable 
distribution, makes the simulation confirmation to FSM algorithm under the stable distribution, and 
presents the system block diagram. It provides a new way for signal separation, recognition and 
extraction under impulse noise environment. 

Ⅱ.Fractional lower order cyclic spectral density 

The statistical moments of signal contain a wealth of feature information .Fractional lower order 
statistics theory(FLOS)  [4,5]is a powerful tool for studying α stable distribution. 

Hypothesis ( )x t , ( ),t∈ −∞ ∞ is a real SaS distributed random process whose characteristics index is 
α ,and position parameter is 0.Its traditional second-order autocorrelation function is: 
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( ) ( ) ( )[ ]ττ += τxτxEτR ,                                                      （1） 

If ( )x t  is a cyclostationary signal that meet the following relation (T is a cycle ) 
         ( ) ( ), ,R t R t Ttt = +                                                          （2） 

The second-order statistical moments of the signal is not exist when it is mixed with stable 
distribution impulse noise. Therefore, fractional lower order cycle stationary signal can be defined as
（3）： 

   ( ) ( ) ( ) ( ), ; , , , , ; ,xx xxR t a t b E x t a x t b R t T a t T bttt  + = + = + + +    （3）                           

In addition: ( ) ( ),
a

x t a x t=    , 0 / 2a a< < . According to Fourier series expansion:  

                                         ( ) ( )
2 2

2

1, , , ; ,
T j t

xx xxT
R a b R t a t b e dt

T
e πett  −

−
= +∫                                     （4） 

Among them ε is a cyclic frequency. As the power spectrum and autocorrelation function are 
Fourier transform pairs, we define the fractional lower order cyclic spectral density as following :      

          ( ) ( ) 2; , ; , j f
xx xxS f a b R a b e de e π ττ τ

∞ −

−∞
= ∫                                        （5） 

The modulated signal is cyclostationaritic. Through analysis the spectral correlation structure of 
the signal, we can complete a variety of signal processing tasks, such as blind signal detection, 
modulation recognition and classification, parameter estimation and blind equalization etc. . 

Ⅲ. Low-level FSM algorithm 

     Assume ( )x t is a second-order cyclostationary process, the cyclic spectrum based on 
continuous FSM algorithm has the following expression[6,7]: 

                                        
( ) ( )2 2

2
,

Tt j fu
T Tt

X t f x u e duπ+ −

−
= ∫

                                                                 （6） 

                                              
( ) 1, , ,

2 2Tx T TS t f X t f X t f
T

α α α∗   = − +   
                                                  （7） 

We obtain the corresponding discrete FSM algorithm as following[8] :       

  ( )
( )

( )1 /2

1 /2

1 1, , ,
2 2t

M

X t s t sf
v M

S t f X t f vF X t f vF
M t

α α α
∆

−
∗

∆ ∆∆
=− −

   = + + ⋅ − +   ∆    
∑                          (8) 

Where ( ),tX t f∆ has the following form: 

( ) ( ) ( ) ( )
1

2

0
, s

N
j f t kT

t t s s
k

X t f a kT x t kT e π
−

− −
∆ ∆

=

= −∑
 

Among them ( )t sa kT∆  is a window for the attenuation data , sMFf∆ = is the width of the spectrum 

smoothing , s sF 1 NT= is the frequency domain sampling width, sT is the time domain sampling width, 
and N is the total number of samples in the t∆ , N t T 1s= ∆ + . The second-order statistical moments of 
the signal is not exist when it is mixed with stable distribution impulse noise. Therefore, the low-level 
statistical features under stable distribution is introduced in（4）、（5）, the result as following: 

                                ( ) ( ) ( )2 2

2
,

Tt AA j fu
T Tt

X t f x u e duπ+ −

−
= ∫ ，

2
pA =                                                  （9） 

( ),
1, , ,

2 2T

A A
X p T TS t f X t f X t f

T
α α α∗   = + −   

   
                                                (10) 

Discrete case[9]:       
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                          ( )
( )

( )
( ) ( )

,

1 /2

1 /2

1 1, , ,
2 2t p

M
A A

X t s t sf
v M

S t f X t f vF X t f vF
M t

α α α
∆

−
∗

∆ ∆∆
=− −

   = + + ⋅ − +   ∆    
∑                 (1

1)  

Among them ( )(A)
tX ,t f∆  has following form:  

( ) ( ) ( ) ( ) ( )
1

2

0
, s

N
j f t kTAA

t t s s
k

X t f a kT x t kT e π
−

− −
∆ ∆

=

= −∑
 

All of the parameters are consistent with the Gaussian model.                                                  

Ⅳ. Examples analysis 

We take modulation signal ( ) ( )( ) cos 2 cf t a t f tπ= for example to analyze low-level circulation 
spectrum: 

( ) ( ) ( ) ( )
t t/2

2

t t/2

, cos 2
AA j fu

t cF t v a t e df ut ππ
+∆

−
∆

−∆

=   ∫
                                           (12) 

If ( )a t is a complex signal, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 212 21, cos 2 cos 2

2 2

t tt t
A AA Aj fu j fuAF t v a t a t f t e du a t a t f t e duc ct t tt t

π ππ π

∆ ∆+ +
−− −− ∗ ∗= =∫ ∫∆ ∆ ∆− −

     (13) 

Therefore:  ( ) ( ) ( ) ( )
2

, 0

2

1 1lim lim , ,
2 2

ff
p A A

f t p t tf t
ff

S f a t F t f F t f df
f t

a aa
∆+

∗
∆ ∆ ∆∆ → ∆ →∞

∆−

   = − ⋅ +   ∆ ∆    ∫               

(14)                  If ( )a t is a real signal, 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 2

2 2
, cos 2 sgn cos 2

t tt tA AA AA j fu j fu
t c ct tt t

F t v f t f t e du f t t f t e duπ ππ π
∆ ∆+ +− −

∆ ∆ ∆− −
= =  ∫ ∫         (15) 

As 0 2p< ≤ , A P 2= , 0 1A< ≤ ，Make  the following change: 

( ) ( ) ( )f t g t f t
∧

∗ =    
( ) 1g t

tπ
=

 

Assume: ( ) ( ) ( )'f t f t j f t
∧

= + , Therefore ( ) ( )'Ref t f t =    
We can obtain the same spectral function with the plural form by turning the real form into plural 

form.  

In the discrete case, ( ) ( )( ) cos 2 cf t a t f tπ=
，Assume ( )a t  is a complex signal , sT is the sampling 

interval,   
( ) ( ) ( ) ( ) ( )

1
2

0
, s

N
j f t kTAA

t s t s s
k

F t f a kT f t kT e π
−

− −
∆ ∆

=

= −∑
                                                              (16) 

Therefore: 

( ) ( )
( )

( )

( ) ( )
( )

( ) ( ) ( )
( )

1
12 21

2
,

1 0
2

1 21
2

0

1 1, .
s

s

M
N j f t kTA

x t p t s s Sf
M kv

N j f t kTA

t s s S
k

S t f a kT f t kT f t kT e
M t

a kT f t kT f t kT e

ap
a

ap

−
 − − − −−  ∗  

∆ ∆∆
− ==−

∗
 − − + −−  ∗  

∆
=

= − − ⋅∆ 

 
− − 

  

∑ ∑

∑

                       (17)    

             
The system block diagram is shown in figure 1: 
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Figure 1    A low-level FSM algorithm system realization diagram 

Ⅴ. Feature extraction based on low-level cycle spectrum 

It is not difficult to get other modulated signals' cyclic spectrum expression under stable 
distribution through the above mathematical analysis. we can select the following characteristic 
parameters based on low-level cyclic spectrum :  

1 ) the amplitude of cycle spectrum 2 1/ ( 0)c sa f T
xS f= + =  : 

        
2 1/ ( 0) (1/ 2 ) *( 1/ 2 ) / 4c sa f T

BPSK p s s SS f k Q T Q T T= + = = −                     
2 1/ ( 0) 0c sa f T

BPSKS f= + = =                                
2 1/

/ ( 0) (1/ 2 ) *( 1/ 2 ) / 2c sa f T
OQPSK MSK p s s SS f k Q T Q T T= + = = −                  

2）the amplitude of cycle spectrum 1/ ( )sa T
x cS f f= = ： 

        
1/

/ ( ) (1/ 2 ) *( 1/ 2 ) / 4sa T
BPSK MPSK c p s s SS f f k Q T Q T T= = = −                         

1/
/ ( ) 0sa T

OQPSK MSK cS f f= = =                        
3）the amplitude of cycle spectrum 2/ ( )sa T

x cS f f= = ： 
2/

/ ( ) (1/ ) *( 1/ ) / 4sa T
BPSK MPSK c p s s SS f f k Q T Q T T= = = −                      

2/
/ ( ) (1/ ) *( 1/ ) / 2sa T

OQPSK MSK c p s s SS f f k Q T Q T T= = = −                
From the above theoretical analysis, we know that pk  is a constant related to p , and build up 

following characteristic parameters based on low-level cyclic spectral:  
1

1 2
( )

( )

s

s

a
T

x c

a
T

x c

S f fA
S f f

=

=

=
=

=    

1

2 22

( )

( 0 )

s

c
s

a
T

x c

a f
T

x

S f fA
S f

=

= +

=
=

=  
Through analysis, signal's characteristic parameters as shown in table 1: 

Table1 the characteristic parameters of different modulation signals 

 BPSK QPSK/8PSK MSK/OQPSK 

1A  
(1/2 ) *( 1/2 )

(1/ ) *( 1/ )

Q T Q Ts s
Q T Q Ts s

−

−
 (1/2 ) *( 1/2 )

(1/ ) *( 1/ )

Q T Q Ts s
Q T Q Ts s

−

−
 

0 

2A  1 ∞  0 

The result showing in the table 1, the characteristic parameter A1 of BPSK and MPSK is same, and 
is always more than 1, while the characteristic parameter A1 of MSK and OQPSK is 0. We can 
separate the BPSK/MPSK and MSK/OQPSK by setting the threshold th1 = 1. Similarly, for the 
characteristic parameters A2, the BPSK and QPSK/8PSK also can be separated by setting the 
threshold th2 = 2. We can identify different modulated signals by designing the above classification, 
which structure is simple, but has a good performance in complex environment. Therefore, the low 
order cyclic spectrum analysis of the modulation signals in this paper offers a new approach to 
modulation recognition under α stable distribution. 

Ⅵ. Computer simulation 

We make simulation for AM modulation signal, the carrier frequency 200cf kHz= , the sampling 
frequency is 600KHz, the symbol rate is 256 , and the baseband signal is a single sinusoidal function. 
We choose conventional second-order correlation analysis method when mixing impulse noise and 
Gaussian noise (SNR = 5dB). The simulation results as figure 2 and figure3.Making simulation for 
AM modulation signal by using the algorithm proposed in this paper, the simulation results as figure 
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4 and figure 5(p=1).Under Gaussian assumption, the cyclostationary of AM signal based on 
second-order cyclic spectral theory as figure 6.  

According to theoretical analysis we can obtain that the maximum correlation peaks appear at 
0α = , 

02 fα = ± . Figure 5(a) and Figure5(b) show that two peaks appear at the 0α =  ,and the other peak 
appears at 130KHzα = ± .Figure3(a), Figure3(b) show the cycle spectrum based on the traditional 
method affects spectral structure under steady noise distribution . And we compare Figure 3 to 
Figure5, the algorithm based on the assumption of α stable distribution has a better anti-noise 
performance than Gaussian assumption. The results show that the algorithm based on the assumption 
of stable distribution is effectiveness and reliability. 

              
（a） 0=ξ                                    （b） 0=f  

Figure 2  AM signal cycle spectrum with mixed noise     Figure 3  Sectional view of the cyclic spectrum  

             
                                                                             （a） 0=ξ                                        （b） 0=f  

Figure 4  AM signal 3D cycle spectrum            Figure 5  Sectional view of the cyclic spectrum 

Ⅶ .Summary 

According to the analysis above, it is clear that the structure of cyclic spectrum on the Alpha stable 
distribution is the same as the structure on the assumption of the Gaussian. But the magnitude is 
different, which mainly depend on the change of p . If 2p = , the fractional cyclic spectrum is 
transformed into the second-order cyclic spectrum. In addition, the analysis of cyclostationarity 
feature based on the assumption of non-Gaussian has good anti-noise ability.The cyclic frequency or 
spectral structure can be regarded as a set of parameters to identify different modulation signal, which 
is based on the conclusion that different communication signals have different cyclic structure. 
Besides, the theory can be applied to the blind source separation, which is of the character of pulse 
noise. The cyclic frequency or new variable based on cyclostationarity can be seen as characteristic 
parameters to separate. In conclusion, it is very meaningful for enriching the theory of signal 
processing to study the character of cyclostationarity signals under stable  
distribution. 
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