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Abstract. As supply chain finance developed, more and more enterprises in manufacturing industry 
can have better payment terms with their cooperator. This paper consider the decision of the optimal 
trade credit term and production lot sizes considering shortage cost in manufacturing industry. We 
build a model with which we can prove that there exist the optimal trade credit term and production lot 
sizes for enterprises in manufacturing industry. 

Introduction 
The manufacturing industry accounts for a great share of the industrial sector in the world especially 

in developing countries such as China, India. As the manufacturing industry developing, it is 
encountering a lot of difficulties especially for small and medium sized manufacturing enterprises. Lack 
of capital is one of them. In other part, as supply chain finance developed, more and more enterprise in 
manufacturing industry has reconsider its payment strategy with its partner. Trade credit as one hot 
research area in supply chain finance has been researched by many scholars for a long time. Trade credit 
can affect the economic order quantity[1], extensive literature has considered the economic order 
quantities under permissible delay in payment[2,3,4,5,6].In this paper, we derive the seller’s optimal 
trade credit term and lot size policies in an EPQ model. As we know, the longer the trade credit term 
the higher the opportunity cost and the default risk. In this paper, shortages are allowed to occur. We 
establish the objective function to find the optimal solution and give some managerial insights. 

Notation and assumptions 
The following notation and assumptions are used in the entire paper. 
Notation. 
N the seller's trade credit period to his/her buyers in years 
Q the seller's production lot size in units 
x the average set-up cost per production run in dollars 
c the average production cost for making the product per unit in dollars 
p the selling price per unit in dollars(with p>c) 
h the average stock holding cost per unit per year in dollars 
r the seller's annual simple interest rate on opportunity cost 
f the unit urgent purchasing price under the condition of shortage 
D(N) the annual demand rate in units as a function of the trade credit period N 
M the annual production rate in units(with M<D(N)) 
Π(N, Q) the seller's profit function per year in dollars 

*N  the seller's optimal trade credit period in years 
*Q  the seller's optimal production lot size in units 
*Π  the seller's optimal profit per year in dollars 
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Assumptions.  
Next, the following assumptions are made to establish the mathematical model. 
(1)We assume that the demand rate D(N) is a positive exponential function of the credit period N as 
( ) aND N Ke= where K and a are positive constants[7].  
(2) We assume that the rate of default risk giving the trade credit term N is assumed here to be 
( ) 1 bNF N e−= − where b is the coefficient of the default risk, which is a positive constant. 
(3) The seller offers the buyer a trade credit term of N. Since the seller's annual simple interest rate 

is r, the future value of $1.00 received by the seller at time N is equivalent to the present value of 
1

1 rN+  received at time 0. Hence, the seller's present value received considering default risk 
and opportunity cost is:  

( )1( )[1 ( )] 11
a b NePD N F N PK rNrN

−
− = ++  .                                                                         (1) 

Mathematical model and optimal solution 
     Based on the above assumptions, the decision model considered here is as follows. The seller must 
decide its trade Credit term N and production lot size Q of a single product Simultaneously in order to 
maximize its profit per year. From the above assumptions and arguments, the annual profit can be 
expressed as ( , )N QΠ = present revenue –production cost – set-up cost – holding cost-shortage cost= 

1( )[1 ( )] [ ( ) ]
1 2

M QPD N F N cM x h D N M f
rN Q

− − − − − −
+

.                                                  (2) 

=

( )
( )1 2

a b N aNM QePK cM x h Ke M frN Q
−

− − − − −+
.                                                                  (3) 

Then we discuss the seller’s optimal solution to production lot size first, and then trade credit term. 
Optimal production lot size 

To maximize the annual profit ( , )N QΠ  with respect to Q is equivalent to minimize the annual total 
cost of the set-up cost and the holding cost, which is  

( )
2

M QTC Q x h
Q

= +
, 

( ) 0TC Q
Q

∂
=

∂  then we know that the seller’s optimal production lot size is 
* 2MxQ

h
=

.                                                                                                                              (4) 
And the minimum total cost of the set-up cost and the holding cost is 

 
*( ) 2TC Q Mxh= .                                                                                                                      (5) 

Consequently, the seller’s decision problem is reduced to a single decision variable N 
( )*( ) ( , ) ( ) 21
a b N aNeN N Q PK cM Ke M f MxhrN

−
Π = Π = − − − −+ .                                   (6) 

Next, we try to obtain the optimal trade credit term for the seller. 
Optimal trade credit term  

In order to find the optimal solution 
*N  of ( )NΠ , we derive the first-order necessary condition for 

( )NΠ  in to be maximized as  
2( ) ( )

2( )

( ) [( ( )(1 ) ) (1 ) ]

[( (( )(1 ) ) (1 ) ] 0

a b N a b N aN

a b N aN

d N PK e a b rN e r rN Kfae
dN
PK e a b rN r rN Kfae

− −

−

Π = − + − + −

= − + − + − =  .                                                                         (7) 
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From the above equation we can obtain the following results: 
Theorem 1. The seller’s optimal trade credit term is zero (i.e., 

*N =0 ) if (1) ( )(1 )a b rN r− + ≤ , or (2) 
2( ) ( )[( ( )(1 ) ) (1 ) ]a b N a b N aNPK e a b rN e r rN Kfae− −− + − + <                                                              (8) 

Proof. If ( )(1 )a b rN r− + ≤ , then we know from that 
( ) 0d N

dN
Π

≤
. Consequently, the seller’s optimal 

trade credit term is set to zero. Likewise, we can easily prove 
*N =0 if 

2( ) ( )[( ( )(1 ) ) (1 ) ]a b N a b N aNPK e a b rN e r rN Kfae− −− + − + < . This completes the proof. 
 
In practice, If ( )(1 )a b rN r− + ≤ , then the higher the trade credit term, the lower the present revenue 
considering default risk and opportunity cost. In this case, the seller should not offer a late payment to 
its buyer. Similarly, If the marginal revenue increase (i.e., 

2( ) ( )[( ( )(1 ) ) (1 ) ]a b N a b NPK e a b rN e r rN− −− + − +  ) is less than or equal to the marginal cost increase 

(i.e., 
aNKfae ), then it is no worth of offering a trade credit term to the buyer. 

Now we discuss the other condition in which 
2( ) ( )[( ( )(1 ) ) (1 ) ]a b N a b N aNPK e a b rN e r rN Kfae− −− + − + = . Which implies that the seller’s optimal 

trade credit term is 

 

2
* 1 (1 )l n [ ( ) (1 ) ]

a f r NN a b r N r Pb
+= − − + −（ ）

>0.                                                                      (9) 
Notice that the right-hand side of the above equation is also a function of N. hence, it’s not a 
closed-form solution. 
For the second-order sufficient condition, taking the derivative of with respect to N, and re-arranging 
terms, we get  

2
4( ) ( ) ( ) ( ) 2

2

( ) [( ( )[( )(1 ) ] ( ) (1 ) [( )(1 ) ]2(1 ) ) (1 ) ]a b N a b N a b N a b N aNd N PK e a b a b rN r e a b r e rN e a b rN r rN r rN Kfa e
d N

− − − −Π
= − − + − + − − + − − + − + + −

=
4( ) 2[( )[( )(1 ) ] ( ) 2 (1 )[( )(1 ) ]) (1 ) ]a b N aNPK e a b a b rN r a b r r rN a b rN r rN Kfa e− − − + − + − − + − + − + −  

4( ) 2 2[( ) (1 ) 2 (1 )[( )(1 ) ]) (1 ) ]a b N aNPK e a b rN r rN a b rN r rN Kfa e−= − + − + − + − + −                     (10) 

Consequently, if 
2( ) (1 ) 2 (1 )[( )(1 ) ]a b rN r rN a b rN r− + ≤ + − + − ,then we know that 

2

2

( )d N
d N
Π

<0, 
and hence ( )NΠ  is a strictly concave function of N. 
From the above equations, we can obtain the following theoretical results. 
Theorem 2. 

(1) If ( )(1 )a b rN r− + > ，and 
2( ) (1 ) 2 (1 )[( )(1 ) ]a b rN r rN a b rN r− + ≤ + − + − , then ( )NΠ  has a 

unique optimal solution 
* 0N >  

(2) If ( )(1 )a b rN r− + ≤ , and 
2( ) (1 ) 2 (1 )[( )(1 ) ]a b rN r rN a b rN r− + > + − + − , then ( )NΠ  has a 

unique solution 
* 0N =  

Then under the condition ( )(1 )a b rN r− + > ，and 
2( ) (1 ) 2 (1 )[( )(1 ) ]a b rN r rN a b rN r− + ≤ + − + − , 

we have 

2

2

( , ) 0N Q
N

∂ Π
<

∂ , 

2

2 4

( , ) 2 0N Q Mx
Q Q

∂ Π −
= <

∂  and 

2

2

( , )N Q x
Q N Q

∂ Π
=

∂ ∂  So we have 

 

2 2 2
2

2 2

( , ) ( , ) ( , )[ ] 0N Q N Q N Q
N Q Q N

∂ Π ∂ Π ∂ Π
− >

∂ ∂ ∂ ∂ ,                                                                              (11) 
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Hence, the Hessian matrix associated with ( , )N QΠ  is negative definite. Applying Theorem 2, we 

know that the unique solution 
* *( , )N Q  is the global maximum solution. 

Numerical examples 
In this section, we provide an numerical example to illustrate the theoretical results above. 
Example. Let a=0.3,b=0.2, r=0.05, p=20, f=5, x=5, c=2,h=$1 per unit per year, M=10000 units per 

year, K=1000 units. We first check the condition ( )(1 )a b rN− + =0.1+0.005N>r=0.05 
Then we substitute the values of the parameters into (9), and use computer software Maple 18.0 

then we obtain a trade credit period N*=0.2053, Q*=316. Substituting N*=0.2053 and Q*=316 into (7), 
we obtain the optimal annual profit for the seller *Π =14382.6 

Summary 
Manufacturing industry is almost the most important industry for many countries in the world. 

While many enterprises in this industry lack of development capital especially for SME. This paper try 
to elaborate that enterprises can by advantage of supply chain fiance to have better payment terms with 
their parterner. We build a model with which we can prove that there exist the optimal trade credit term 
and production lot sizes for enterprises. 
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