
1 INTRODUCTION 

After the 2008 financial crisis, the risk of 
fluctuations in the financial assets had gradually 
become a hot topic. In a market economy, these 
fluctuations are not only to bring a profit but also 
become a risk to securities and options. Currently, 
the study of time series of stock market volatility has 
become an integral part of the financial study. 
Therefore, it is of very important to study the time-
series analysis of financial assets. 

In recent years, a large number of domestic and 
foreign scholars promote the progress of financial 
time series analysis. Engle (1982) proposed a 
creative autoregressive heteroscedasticity model 
(ARCH model) to forecast the correlation of error 
conditional variance [1]. The ARCH model was 
developed by Bollerslev （ 1986 ） to build a 
generalized autoregressive heteroskedasticity model 
(GARCH model) [2]. Taufiq (1995) used GARCH 
model to study the volatility characteristics of 1920-
1930 five European countries stock returns and 
found that financial assets would continue to 
fluctuate with the interference of external factors [3]. 
Li Cong (2006) used the GARCH model to calculate 
the Shenzhen Composite Index's value depending on 
the different distribution function, and found that 
GARCH model had some limitations

 
[4]. Liu and 

Hung (2010) forecasted S&P100 Index volatility 
equation in the case of asymmetric information, and 
found that asymmetric GARCH model was more 
accurate in predicting volatility

 
[5]. 

Although GARCH model has been relatively 
mature in the study of volatility, but the existing 
method isn’t simple enough in solving the European 
option pricing problem. In this article, GARCH 
model and Monte Carlo algorithm (GARCH-MC) 
will be combined to calculate the future value of the 
stock by means of simulating the underlying price’s 
changing track. The warrants will be used to conduct 
empirical test. 

2 MODELING 

2.1 Theoretical basis 

The chromatography column was successively filled 
by cotton, 5.5g silica gel with column 
chromatography reagent grade (100-200 mesh, 
activation for 5 hours at 120℃), and 1.2g anhydrous 
sodium sulfate (AR, activation for 12h at 30℃) 
placed on the top. Each sample accurately weighed 
was fully dissolved by 15mL configured mixed 
solution of dichloromethane and n-hexane (volume 
ratio is 2:1). Rinse the filled column by 10mL 
hexane, when anhydrous sodium sulfate just 
exposed, immediately pouring the dissolved oil 
sample prepared into the column and collecting the 
chromatography liquid for testing. 

Monte Carlo method is a computing method 

based on probability theory and statistical methods. 

In this method, the issue to be solved is linked with a 

probability model. The approximate solution will be 

found out by means of simulating in computer. 
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Monte Carlo method is based on risk-neutral pricing. 

European derivative securities are studied in this 

paper, and such derivative securities holders cannot 

make any decisions within the validity period. 

Assuming that at the moment T , the earnings of 

derivative securities is fT . Then in the neutral world, 

the value of the time 0 follows the following 

equation. 

f = e-rT Ê fT[ ]                           (1) 

Where r is risk-free rate. 
The path of the underlying variables in a risk-

neutral world can be simulated, if derivative 
securities only depend on a random variable, and this 
variable is not the interest rate. Then, thereturnis 
calculated in the path back to time 0. The final value 
of the derivative securities is obtained, which may be 
seen as the random sample of the all final value 
collection. 

After calculating the final value of large number 

of samples, Ê fT[ ]  is estimated by the arithmetic 

mean of final values. By discounting the risk-free 

interest rate in Ê fT[ ] , the present value of the 

estimated value of the derivative securities can be 

calculated.   

When researching fluctuations of financial assets, 

the volatility is usually used as a measure of the size 

of the index fluctuations. The underlying price 

series  tS  ( 0,1,t  L L ) is converted into the 

underlying the return sequence  tu  ( 1,2,i  L L ) 

to consider.  tu
 
is defined as the following 

equation. 
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In the risk-neutral world, suppose that the return 
sequence of stocks follows the following equation. 
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Where   is mean, t is random variable, also 

et Yt-1 ~ N 0,s t

2( ), 1t  
means all the information sets 

before the moment 1t  . 

 t  ( 1, 2,t l l   L ) can be got by  tu
 

( 1,2,i  L L ).  t  
is defined as following 

equation. 
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Where, l is window length. 

Then, s t

2  follows (1,1)GARCH  model[6]. 

s t

2 = w +a ut-1 - m( )+ bs t-1

2                   (5) 

LV                                  (6) 

Where , ,    are corresponding parameters, 

LV is long-term average variance, and 1     . 

Parameter estimation
 
[7]:   

Assuming 2

i iv   
is the estimate of variance at 

the moment i  under the condition of a given 

variance, and the probability distribution of 
i  

is 

normal distribution, it follows the following 

equations. 
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Then the likelihood function is  
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The likelihood function is calculated by using the 

search algorithm for each group  、  、   to 

calculate, and the optimal solution is obtained (The 

optimal parameters can be carried out by using the 

SPSS 20.0). 
After getting the optimal parameters, (1,1)GARCH  

model is used to forecast volatility in the future. It 
follows the following equation. 

   2 2t
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    2 2t
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(9) 

2.2 GARCH-MC option pricing steps 

Step1: Creating a standard normal random matrix 

with j  lines and T columns, where T means the 

number of days to the deadline (Time to deadline 

excluding weekends and holidays), j  means the 

number of the simulation path,  ,n j T means an 

element of the standard normal random matrix. And 

   , ~ 0,1n j i N 1,2,3, ,i T L  

Step2: The volatility at the moment T is 

calculated by using the  、 b 、  coming from 

 1,1GARCH
 
estimation. And then, the estimation of 

volatility is got as 
1 2 3

ˆ ˆ ˆ ˆ, , , ,t t t t T      L . 

Then the estimation of ˆ
t iu   is obtained as the 

following equation. 
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 ˆ ˆ ,t i t iu n j T   
                      

(10) 

Step3: Under the known condition of 
tS , the 

stock price at timeT follows the following equation. 
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Step4: Then, the European option prices follow 

the following equations. 
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Step5: After averaging the simulation j  times, 

the option price is carried out. 

3 EMPIRICAL TEST 

The fitting degree of the option price estimated by 
the model and the real market price is the most 
concerning factor in option pricing. Three indicators 
are used to measure the fitting degree of the 
GARCH-MC model. They are the Mean Absolute 
Error (MAE), the Mean Relative Percentage Error 
(MRPE) and the Mean Absolute Percentage Error 
(MAPE). Relative to MAE, MRPE is a percentage of 
the value, which can better characterize the 
relationship between the error value and the option 
price. Compared to MRPE, MAPE is an absolute 
value data, which is a positive number and more 
convenient to analyze.  
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Where, N  is the data size, modelP
 
is the model 

data, obsP is the observed data. 

The observed data is from the State Grid 
Corporation Of China (SGCOC) shares and warrant 
data, the Sinochem International Corporation (SIC) 
shares and warrant data. 

3.1 SGCOC pricing results 

The comparison of the model data and the observed 
data of SGCOC warrant is shown in Fig. 1. 

 
Fig.1 The comparison of the model data and the 
observed data of SGCOC warrant 

The MAE, MRPE and MAPE between model 
data and observed data are shown in table 1 during 
457 market days. 

Table 1: Three indicators of SGCOC Pricing 

 MAE MRPE MAPE 

Mean 1.4176 .5345 5357 

N 457 457 457 

Standard Deviation .52945 .19134 .18794 

It can be seen from Fig.1 that there are some 
differences between model data and observed data. It 
also can be seen from Table 1 that the values of 
MAE, MRPE and MAPE are larger. But the 
variation trend of the model data and the observed 
data is coincident. It shows that the model data can’t 
be used directly to forecast the options price. The 
model should be adjusted according to the 
differences between model data and observed data.  

priceP adjusted P odel Dm                   (17) 

Where, Dprice is the mean value of the differences 
between model data and observed data. 

The comparison of the adjusted model data and 
the observed data of SGCOC warrant is shown in 
Fig.2. Three indicators of SGCOC Pricing afer 
adjusting are shown in Table 2. 

 
Fig. 2 The comparison of the adjusted model data 
and the observed data (SGCOC) 

Table 2:Three indicators of SGCOC Pricing afer adjusting 

 MAE MRPE MAPE 

Mean 0 0 .1056 

N 457 457 457 

Standard Deviation .52945 .19134 .18794 
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As can be seen from the Fig. 2, the differences are 
reduced after adjusting. It also can be seen from 
Table 2 that the values of MAE, MRPE and MAPE 
are also reduced dramatically after adjusting. It 
shows that the model data after adjusting is fit for 
SGCOC warrant pricing and GARCH-MC model 
after adjusting can be used to forecast the options 
price. 

3.2 SIC pricing results 

The comparison of model data and observed data of 
SIC warrant is shown in Fig.3. 

 
Fig.3The comparison of the model data and the 
observed data of SIC warrant 

The MAE, MRPE and MAPE between model 
data and observed data are shown in table 2 during 
232 market days. 

Table3: Three indicators of SIC Pricing 

 MAE MRPE MAPE 

Mean 1.1561 .0144 .1125 

N 232 232 232 

Standard Deviation 1.01266 .14471 .09187 

As can be seen from the Fig. 3, the theoretical 
price and the market price are pretty close under the 
GARCH-MC model estimating. It also can be seen 
from Table 3 that the PRE and APRE are small. It 
shows that the model data is fit for SCI warrant 
pricing and GARCH-MC model can be used directly 
to forecast the options price. But adjusting according 
to Eq. 17, the accuracy of the model is higher. 

The comparison of the adjusted model data and 
the observed data of SIC warrant is shown in Fig.4. 
Three indicators of SIC Pricing afer adjusting are 
shown in Table 4. 

 
Fig. 4 The comparison of the adjusted model data and 
the observed data (SIC) 

Table 4: Three indicators of SIC Pricing afer adjusting 

 MAE MRPE MAPE 

Mean 0 0 .0563 

N 232 232 232 

Standard Deviation 1.01266 .14471 .09187 

4 CONCLUSIONS 

In this paper, the GARCH (1,1) model is used for 
data modeling and forecasting. The GARCH (1,1) 
model is combined with the Mote Carlo algorithm to 
study European option pricing. The differences 
between the model data and the observed data are 
calculated by the GARCH-MC model. The GARCH-
MC model is adjusted according to the differences to 
forecast the option prices. The GARCH-MC model 
is tested by the SGCOC and the SIC warrants. The 
conclusions are following: 

(1) The variation trend of the model data and the 
observed data of the SGCOC and the SIC warrants 
are coincident. 

(2) In the SGCOC pricing, the differences 
between the model data and the observed data are 
large. It shows the GARCH-MC model can’t be used 
directly to forecast its prices. But after adjusting, the 
GARCH-MC model is fit for the SGCOC option 
pricing. 

(3) In the SIC pricing, the differences between the 
model data and the observed data are small. It shows 
the GARCH-MC model can be used directly to 
forecast its prices. But after adjusting, the model 
accuracy is higher. 
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