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Abstract. SPONGENT is a hash function based on the sponge construction and uses the 
PRESENT-type permutation as the internal permutation. The lightweight edition of SPONGENT has 
sizes of 88, 128, 160, 224 and 256 bits and we focus on SPONGENT-88. In this paper, we combine 
the higher order differential attack and integral attack to construct an improved zero-sum 
distinguisher for 14-rounds SPONGENT-88 in computational complexity 280. The encouraging 
results can provide technical reference for further cryptanalysis of PRESENT-type algorithms. 

Introduction 

With the development and application of the AES, the need for new block cipher has been diminished. 
However, the excellent cipher is not quite suitable in the extremely constrained environment, such as 
the sensor networks and RIDF which require both security and hardware efficiency equally. Once this 
need appeared, the cryptographic community designed plenty of custom-built lightweight 
cryptographic algorithms to satisfy this need. For example, stream ciphers like Trivium[5], and 
Grain[7] as well as block ciphers like HIGHT[8], SPONGENT[3] and PRESENT[2] are all designed 
to meet the needs of lightweight cipher.  

Since the end of the 20th century the integral attack has been an important cryptanalysis method. Its 
first target is an algorithm called Square which plays a very important role in the analysis of the AES. 
The higher-order differential analysis was proposed by Lai in 1994 and Knudsen presented the 
concept of high order differential attack systematically in 1995 and used it to analyze the Feistel type 
ciphers.  Although the two methods have different theoretical basis, they both use a group of chosen 
plaintext to build a distinguisher and obtain a balanced state at the end of the distinguisher. To be 
more specific, they both firstly find some active bytes or bits and take all the possible values while the 
other bits stay constant and finally make all the ciphertexts or some bits xor be zero. 

In this paper we combine the two methods to construct an improved zero-sum distinguisher for 14 
rounds PONGENT-88 in computational complexity 280, which is 24 less than that of Dong etc.[6] and 
we believe that this method can also be implied in the other PRESENT-type ciphers.  

The reminder of the paper is organized as follows. Section 2 describes the related basic knowledge 
of the analysis. Section 3 introduces the construction of SPONGENT-88 . Section 4 describes the 
steps of constructing the zero-sum distinguisher of the SPONGENT-88 in detail. In section 5, we 
conclude and point out the study direction in the future. 

Preliminaries 

Higher-Order Derivatives. The higher-order derivatives was presented by Lai in[11] and applied to 
attack KN cipher by Knudsen in [9]. We recall some basic notions needed in the analysis process. 

Definition 1. Let (S, +) and (T, +) be Abelian groups. For a function TSf : , the derivative at a 
point Sa 1

 is defined as 
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The high-order differential attack takes advantages of those properties to analyze the algorithms. 
One can calculate the upper bound of the algebraic degree of the attacked function denoted as d and 
choose d+1 bits as the active bits while the other bits are constant, then the balanced state would be 
gotten at the end of output round if the active bits take all the possible values. 

Zero-Sum Distinguisher.The zero-sum property is a new type of distinguishing property which has 
been recently presented by Aumasson and Meier[1]. For a given function f(x), a zero-sum is that the 
set of inputs sum to zero as well as their images by f(x) also sum to zero. Such zero-sum properties 
can be seen as a generalization of multiset properties (as known as integral properties)[4,10]. This 
method has been used in the cryptanalysis of the SHA-3 candidates, such as Luffa, Hamsi and 
Keccak. 

Definition 2. Let F be a function from nF2 into mF2 . A zero-sum for F of size K is a subset },...,{ 1 kxx

nF2  of elements which sum to zero and for which the corresponding images by F also sum to zero. 
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SPONGENT 

SPONGENT, proposed in the CHES 2011[3], is a hash function based on the sponge construction and 
uses the PRESENT type permutation as the internal permutation. The lightweight edition of 
SPONGENT has sizes of 88, 128, 160, 224 and 256 bits and we focus on SPONGENT-88.  

Sponge construction is a new choice for the constructing of hash functions, which can be split into 
two parts: the absorbing and the squeezing. In the absorbing phase, r bits input message are xored into 
the first r bits of the state and then enter into a large b-bit permutation πb until all the input message are 
processed. In the squeezing phase, the first r bits of the state are returned as the output and then enter 
into the same b-bit permutation until all the n needed bits are returned. The specific construction is 
showed in the figure 1. 
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Figure 1 
The permutation πb of SPONGENT uses PRESENT structure which is a variant of SPN 

network.The S-box and permutation used in SPONGENT-88 are listed in table 1 and table2. 
  x 0 1 2 3 4 5 6 7 8 9 A B C D E F 
 S(x)  E D B 0 2 1 4 F 7 A 8 5 9 C 3 6 

Table 1 
0 22 44 66 1 23 45 67 2 24 46 
68 3 25 47 69 4 26 48 70 5 27 
49 71 6 28 50 72 7 29 51 73 8 
30 52 74 9 31 53 75 10 32 54 76 
11 33 55 77 12 34 56 78 13 35 57 
79 14 36 58 80 15 37 59 81 16 38 
60 82 17 39 61 83 18 40 62 84 19 
41 63 85 20 42 64 86 21 43 65 87 

Table 2. 
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Improved Attack on SPONGENT-88 

Firstly, we calculate the algebraic normal form of the S-box of SPONGENT-88. We use 4321 ,,, xxxx

to denote the four input bits and 4321 ,,, yyyy to denote the output bits. The algebraic normal forms of 

the S-box of forward and backward direction are shown in table 3. 
Output    Forward Backward 

        

         
         

         
Table 3 

Then we build a 14 rounds zero-sum distinguisher of the SPONGENT-88 using the methods 
mentioned in section 2 to obtain the balanced state at the both ends of the rounds. We set the 7th round 
as the initial state so the 1st to the 6th rounds is the backward direction while the 7th to the 14th rounds 
is the forward direction.   

 
Forward Rounds. We construct a 14 rounds Zero-Sum distinguisher and set the 7th round as the 
beginning round. 

round       the upper bound algebraic degree of each bit 

 
9 

(1,0,0,0),(0,0,0,1),(0,0,0,0),(0,0,0,0),(0,0,1,0),(0,0,1,0),(0,0,0,0),(0,1,0,0), 
(0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0) (0,0,0,1),(0,0,0,0),(0,0,0,0),(0,0,1,0), 
(0,0,1,0),(0,0,0,0)(0,1,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0) 

 
10 

(1,1,0,0),(1,1,0,1),(0,0,1,1),(1,0,0,1),(1,0,1,0),(0,1,1,1),(0,0,1,1),(0,1,0,0), 
(1,1,1,0),(0,1,1,0),(1,0,0,1),(1,1,0,0)(1,1,0,1),(0,0,1,1),(1,0,0,1),(1,0,1,0), 
(0,1,1,1),(0,0,1,1)(0,1,0,0),(1,1,1,0),(0,1,1,0),(1,0,0,1) 

 
11 

(2,3,2,2),(2,2,2,1),(2,1,2,2),(3,2,2,2),(2,2,1,2),(1,2,2,2),(1,2,2,2),(1,1,3,2), 
(2,2,2,1),(2,2,2,1),(1,3,2,2),(2,2,1,2),(2,2,1,1),(3,2,2,2),(2,1,2,2),(2,1,1,3), 
(2,2,1,1),(1,1,1,2),(1,1,2,2),(1,1,1,1),(1,1,2,1),(1,2,2,1) 

 
12 

(7,5,6,7),(6,5,5,6),(5,5,6,6),(5,7,6,6),(5,4,4,3),(4,4,7,6),(5,7,5,5),(5,5,6,6), 
(6,5,5,7),(5,4,5,3),(4,3,4,5),(7,6,5,7),(5,5,5,5),(6,6,6,5),(5,7,5,4),(5,3,4,3), 
(4,5,5,4),(3,4,3,4),(4,4,4,4),(5,3,3,4),(3,2,3,2),(3,2,3,4） 

 
 
13 

(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12)(12,11,12,12), 
( 8,10,12,12),(12,12,12,12),(12,12,12,12),(11,12,12,12),(12,12,12,10), 
(12,11, 8, 8), (12,12,12,12),(12,12,12,12),(12,12,11,12),(12,12,12,12), 
(12,10,12,11),( 8, 8,11,10),(11,12, 8,11),(12,11,10, 9),( 7,11,10,12), 
(12,7,10,7),( 8, 6, 5, 5) 

 
 
14 

(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12), 
(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12), 
(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12), 
(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12),(12,12,12,12), 
(12,12,12,12),(12,12,12,11) 

Table 4. The upper bound algebraic degree of the bits of the 9th to the 14th rounds 
 

 (1) The initial state. We select S1,S8,S19 as the active S boxes, which including 12 active bits and 
the other bits in those three S boxes stay constant. The S box is a substitution, permutation only 
changes the relative position of the bit and the Add Round Constant can’t influence the  property of 
the active bits. So those active bits still stay active and independent after translating from the S box. 

 (2) The ninth round. The 12 active bits’ positions have been changed by the permutation layer. 
Those 12 active bits enter into 12 different S-boxes of the next round, thus there are still 10 S-boxes 
that have no active bit.  

1y 121434131431421  xxxxxxxxxxxxxx 1434232 xxxxxxx 

2y 13241321  xxxxxxx 432433231432 xxxxxxxxxxxx 

3y 1432413121321  xxxxxxxxxxxx 143423221432  xxxxxxxxxxx

4y 43132 xxxxx  132142431421  xxxxxxxxxxx
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(3) The tenth round. The 4 variables- 4321 ,,, xxxx all appear at the right of the equations, so all the 

bits that translating from the S-box will be effected by those variables. As a result, even though one S 
box has only one active bit, the other 3 bits will be effected by it and their algebraic degree may be 
changed from zero to one. So the outcome of all the active S boxes will be active and their algebraic 
degree’s upper bound might become (1,1,1,1). And the other bits’ upper bound degree is still (0,0,0,0). 
After the permutation, the result of this round is showed in the 3rd row of table 4. 

(4) The eleventh round. The output of the tenth round enter into the S boxes again and we calculate 
the algebraic degree of those bits by the assistance of the equations. We chose the first S box as an 
example, the bits whose algebraic degree is (1,1,0,0) enter the first S box of the eleventh round. 
According to the equation y1=x1x2x4+x1x3x4+x1x3+x1x4+x3x4+x1+x2+1 the highest power is x1x2x4 and 
x1x3x4 and the algebraic degree of two variables x3 and x4 are 0.We can calculate that the upper bound 
algebraic degrees of x1x2x4, x1x3x4 are separately 2 and 1. In conclusion, the upper bound algebraic 
degree of y1 is 2. We can use the same method calculate the upper bound algebraic degrees of the 
other three output bits which are 2,2,1. So after the influence of the S box the upper bound algebraic 
degrees of the 4 bits have been changed from (1,1,0,0) to(2,2,2,1). Then we use the permutation 
change the position of the output bits and we can find the final results in the fourth row of the table 4. 

(5) The twelfth and thirteenth rounds. We can calculate the change of upper bound algebraic 
degree of the bits in twelfth and thirteenth rounds. Because there are only twelve variables involved in 
the whole process, the highest algebraic degree of those bits can’t be more than 12. And we can find 
that the upper bound algebraic degrees of the last four bits  are (8,6,5,5). 

(6) The fourteenth round. According to the function y4=x2x3+x1+x3+x4 and the value of the last four 
bits , we can calculate that the value of the upper bound of x2x3, x1, x3, x4 are 11,8,5,5. So the upper 
bound algebraic degree of y4 is 11 which is less than the maximum--12. 

So we select 12 bits in the ninth bound and try all the possible 212 values and at the same time all 
the other bits are constant and we can get a balanced state at the end of the 14th round. 
Backward Rounds. The higher-order differential path of the first to the fourth rounds of the 
distinguisher is the backward rounds. We set the fourth round of the forward direction as the first 
round of the reverse direction and calculate the upper bound algebraic degree by using the functions 
of the reverse of S-box. 
 

round  the upper bound algebraic degree of each bit 

 
    4 

(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1), 
(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0), 
(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)   

    
    3        

(1,1,2,2),(1,1,2,2),(1,1,2,2),(1,1,2,2),(1,1,2,2),(1,1,2,2),(1,1,2,2),(1,1,2,2), 
(1,1,2,2),(1,1,2,2),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1), 
(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1) 

    
    2  

(3,4,4,4),(3,4,4,4),(2,3,3,4),(2,3,3,4),(3,4,4,4),(3,4,4,4),(2,3,3,4),(2,3,3,4), 
(3,4,4,4),(3,4,4,4),(2,3,3,4),(2,3,3,4),(3,4,4,4),(3,4,4,4),(2,3,3,4),(2,3,3,4), 
(3,4,4,4),(3,4,4,4),(2,3,3,4),(2,3,3,4),(2,3,3,3),(2,3,3,3) 

     
     1 

(8,8,8,8),(8,8,8,8),(6,8,8,8),(8,8,8,8),(7,8,8,8),(8,8,8,8),(6,8,8,8),(7,8,8,8), 
(6,8,8,8),(8,8,8,8),(7,8,8,8),(8,8,8,8),(7,8,8,8),(8,8,8,8),(6,8,8,8),(8,8,8,8), 
(7,8,8,8),(7,8,8,8),(5,7,7,8),(7,8,8,8),(6,8,8,8),(8,8,8,8) 

Table 5. The upper bound algebraic degree of the 4th to the 1st rounds 
 

(1) The initial state. We chose the first eight bits of the input bits of the fourth round of the forward 
direction as the active bits which can be denoted by x1,x2,…x8. The 8 active bits enter into 8 different 
S-boxes and the other bits are all constant. We can see from the right of those functions that all the 
four variables appear. So even though there is only one active bit enter into the S box, all the 4 bits 
will be influenced by it and their upper bound algebraic degree might become 1, which can be seen 
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from the second row of the table 5. So the first 8 bits’ algebraic degree will become 1 and the other 
bits that are not influenced by the active bits still are constant and their algebraic degree is 0. 

(2) The third round. Firstly, all the bits enter into the permutation layer and their position have 
been changed. The upper bound power of bits that enter into the first ten S boxes are (1,1,0,0) and that 
enter into the last twelve S boxes are (1,0,0,0). Then, we can calculate the change of those bits’ 
algebraic degree according to the functions that maintained early. The result is showed in the third 
row of table 5. 

(3)The second and the first round. Using the same method we can get the algebraic degree of the 
second and the first round and we can get all the 88 bits’ algebraic degree, showing in the fifth row of 
table 4. We can conclude from the table 5 that there are still fifteen bits whose algebraic degree 
haven’t achieve the maximum eight. So it is a balanced state, too. 

  So if we select the first 8 bits of the fourth round as the active bits, set the fourth round as the 
initial state and calculate all the 28 values while the other bits stay constant, we will have a balanced 
state at the first round. 
Combination of the Two Differential Paths. In this chapter we will combine the higher-order 
differential attack and the integral attack to build a fourteen rounds high order differential path and 
get a fourteen round zero-sum distinguisher. 

 
 
the 4th 
round 
 

 
the 5th 
round 
 
 
 
the 6th 
round 
 
 
the 7th 
round 
 
 
 
the 8th 
round 
 
 
 
the 9th 
round 
 
 

Figure 2. The integral of 4th to 9th rounds 
 

In the integral attack, for a integral attack if we can find a state that all the active and independent 
bits contain the original active and independent bits of the initial state after the changing of a round, 
then we can attach this round to head of the primary integral attack path. So in this way we can get a 
new integral attack path which is one round more than the original one. If the original integral path is 
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balanced, the new path is also balanced. So we can use this method to combine the forward and 
backward high order differential paths that we get in the former two chapters. 

As shown in figure 2., in order to guarantee the 12output bits of S1,S8,S1 to be independent and 
active, we need  S1,S2,S3,S4,S7,S8,S9,S10 output bits be active and independent. So we need the S1-S18 
and S20 output bits of the 7th round be active and independent. While in the backward direction, if we 
want the input bits of S1,S2to be active and independent, we need the output bits of S1,S12,S17,S18 of 
the 6th round be active and independent. And in order to keep those S boxes be active and independent 
we need keep the outputs of S1,S2,S3,S5,S6,S7,S8,S9,S10,S12,S13,S14,S16,S17,S18,S20,S21 of the 7th round 
active and independent. So we chose union set of the S boxes in the 7th round that the two directions 
both need as the initial state. So we select S1-S18,S20,S21as active S-boxes, we will construct a fourteen 
rounds zero-sum distinguisher which can obtain the balanced state at the both ends, whose 
computational complexity is 280 .  

Conclusion 

In this paper, we introduce an improvement on the 14 rounds zero-sum distinguisher of the 
SPONGENT-88 and improve the computational complexity from 284 to 280. And in the future, we 
will focus on the combining of the integral attack, high-order differential attack and the zero-sum 
properties to find more connections of those methods. What’s more, we can apply the thoughts of this 
paper to other PRESETN-type algorithms and other variations of the SPONGENT. 
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