
1 BACKGROUND 

The single-machine problem of minimizing the 

number of late jobs can be described as follows. 

There is a set of n jobs, },,1{ nJ  , to be 

processed on a single machine. Each job Jj has a 

processing time jp , and a due date jd  )( jj dp  . 

In a given schedule, for each job Jj , we define 

jC  to be its completion time, and jU  to be 1 if 

jj dC   and 0 otherwise. We say that in a given 

schedule job j  is early if 0jU  and late if 

1jU . The problem is to find a non-preemptive  

schedule that minimizes  

n

j jU
1

. 

  This problem and its several variants have been 

extensively studied in the production scheduling 

literature. Moore (1968) gives an )log( nnO  

algorithm for finding an optimal schedule for the 

problem. For ease of presentation, this algorithm is 

called Moore-Algorithm hereafter. Without loss of 

generality, we assume that the jobs are indexed such 

that ndd 1 . Furthermore, given a set of jobs 

S , we define some notations as follows. 

:)(S  the schedule that jobs in S  are se         

quenced according to the Earliest Due Date First 

rule.  

|:| S  the number of jobs in S . 

:))(( SF   the completion time of the last job of 

the schedule )(S . 

S  is feasible if all the jobs in the schedule )(S  

are early. 

The Moore-algorithm is stated as follows. 

Moore-Algorithm 

Step 1. 0E , 0j  and go to Step 2. 

Step 2. If nj  , then go to Step 3. Otherwise, 

1 jj ; compute jE  as follows and return to  

s  

1 1

1

{ }, ( ( { }))

{ }\{ } otherwise

j j j

j

j

E j if F E j d
E

E j l

 



  
 


(1) 

where l is a job in 1 { }jE j  satisfying  

1max{ | { }}.l i jp p i E j                  (2) 

Step 3. STOP. 

The schedule ( ( ( ), \ )n nE J E is the output of the 

Moore-Algorithm, where the sequence of jobs in 

\ nJ E  is an arbitrary one. 

Example 1. Consider four jobs {1,2,3,4}J   with 

the following parameters. 

Table 1: Problem instance of four jobs.  

job 1 2 3 4 

pj 5 4 3 2 

dj 6 10 13 13 

Minimum Total Processing Time Analysis for Moore-Algorithm 

Wei Cai & Shanlin Li 
Department of Mathematics, Taizhou University, Taizhou, Zhejiang, 317000, China 

ABSTRACT: Moore (1968) gives an )log( nnO  time algorithm to find an optimal schedule for the single-

machine number of late jobs problem. Pinedo (2002) points out, without giving a detail proof, that the early 

job set generated by the Moore-Algorithm obtains not only the maximum number of jobs but also the smallest 

total processing time among all optimal schedules. In this paper, we give a new optimality proof of the 

Moore-Algorithm and show simultaneously that the statement of Pinedo is correct. This property may be 

applied to study of the hard real-time systems. 

KEYWORD: Production scheduling; single machine deterministic sequencing; algorithm; real-time system 

International Conference on Industrial Technology and Management Science (ITMS 2015) 

© 2015. The authors - Published by Atlantis Press 720



The schedule generated by the Moore-Algorithm 

is 4 4( ( ), \ ) (2,3,4,1)E J E   with 
4

1
1jj

U


 .  

Note that there may exist many optimal schedules 

for the number of late jobs problem. For example, 

there exist four optimal schedules: (1,2,3,4),  

(1,2,4,3),  (1,3,4,2),  and (2,3,4,1) in the example 

1. Then it seems to be an interesting issue what 

characteristics the schedule by the Moore-Algorithm 

has when compared with other optimal schedules. 

This idea is motivated in part by two facts. One is 

that Pinedo (2002) mentions in the optimality proof 

of Moore-Algorithm that jE , for 1, ,j n , 

satisfies the following two conditions: 

(i) jE  has the maximum number of jobs among 

all feasible subsets of {1, , }n . 

(ii) Among all feasible subsets with | jE | jobs of  

{1 , 2 , , j }, the jobs in ( )jE  have the smallest 

total processing time. 

But a detailed proof is not given. Recently Pinedo 

(2008) provides a proof of condition (i). This seems 

that condition (ii) is valid but not easy to prove. 

Another fact is related to the problem of 

nonpreemptive scheduling of n  tasks on a single 

processor of a hard real-time system. In a hard real-

time system, the computer is required to support the 

execution of applications in which the timing 

constraints of the tasks are specified. The correctness 

of the system depends on the temporal correctness as 

well as the functional correctness of the tasks. 

Failure to satisfy the timing constraints can cause 

catastrophic effects. For each task, the system have 

the choices: either rejects it or accepts it. Once a task 

is accepted by the system, the system should be able 

to finish it under the timing constraint of the task. A 

task i  can be characterized as a triple of 

( , , )i i ir p d , representing the ready time, the 

computation time, and the deadline of the task 

respectively. A task cannot be started before its 

ready time. Once started the task must use the 

processor for a consecutive period of ip  and be 

finished by its deadline. The problem is NP-

complete (Garey and Johnson, 1979). Hwang and 

Cheng (2001) explore the problem and propose an 

optimal schedule such that the number of rejected 

tasks is minimized, and then the finish time is 

minimized for the accepted tasks. The complexity of 

their scheduling algorithm in the worst case remains 

exponential. Now we consider a special case of the 

problem where ir  is a constant. In the case, the 

problem reduces to finding a non-preemptive 

schedule that satisfies the conditions (i) and (ii), 

where the set of the late jobs is treated as the set of 

rejected tasks. If we can show that the schedule by 

Moore-Algorithm satisfies the conditions (i) and (ii), 

then the problem in the special case is polynomial 

solvable. 

In the next section, we show that the schedule by 

the Moore-Algorithm satisfies conditions (i) and (ii).  

2 A NEW ANALYSIS 

We give the main result in this section. In the 

following theorem, a new condition (ii )  is 

presented instead of the condition (ii), it is a more 

concise description for the output of the Moore-

Algorithm than (ii) and implies (ii). For any j J , 

some additional notations are defined as follows. 

( )jE : the schedule that the jobs in jE  are 

sequenced according to the Shortest Processing 

Time First rule. 
*

je : the maximum number of jobs among all 

feasible subsets of {1,2, , j} . 
*( )jS k : the feasible subset with the smallest total 

processing time among all feasible subsets with k 

jobs of {1,2, , j} , for 1,2,...,| |jk E . 

Let 1 2 | |( ) ( , ,..., )
jj j ES E h h h  ;

1 2(k) ( , ,..., )j kS h h h  for 1,2,...,| |jk E .When 

0, ( )jk S k  is defined to be  . For example, 

4 4( ) (4,3,2)S E  ; 4(1)S  {4} , 4(2) {4,3}S  , 

4(3) {4,3,2}S  ; 4( ( (1)))F S , 2 , 

4( ( (2))) 5F S  , 4( ( (3))) 9F S   in Example 1. 

Theorem 1. For all j and k, the subset jE  

generated by the Moore-Algorithm satisfies the 

following two conditions: 

(i) 
*

j jE e . 

(ii) 
*( ) ( )j jS k S k . 

Proof: The proof consists of two steps. The first 

step shows that the job sets 1 2, ,..., nE E E  by Moore-

Algorithm are all feasible. We prove it by the 

induction. 1E  is obviously feasible. Assume that 

1jE   is feasible. If 1( ( { }))j jF E j d    , 

then 1j jE E   { }j , and 1( ) ( ( , )).j jE E j    

Therefore, jE  is feasible. If 1( ( { }))j jF E j d    , 

then 1j jE E    { }\{ }j l , and either 

1( ) ( )j jE E   (where l=j) or
1( ) ( ( \{ }, )j jE E l j     

(where 1jl E  ) holds. jE  is feasible in the case 

1( ) ( )j jE E    naturally. Note first that 1 \{ }jE l   
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is feasible since so is 1jE  . In addition, 

1( ( { }\{ }))jF E j l   
1 1( ( ))j j jF E d d     

follows from (2). Thus, jE  is feasible in the case 

1( ) ( ( \{ }, )j jE E l j   . 

The second step shows the results (i) and (ii ) . 

To prove this, assume that it is true for 1j   and 

11 1 1 2 | |( ) ( , ,..., )
jj j ES E h h h
   . By the definition of 

1jS  , we have 

1 2 | |1E j
h h hp p p



                        (3) 

Next we show that it is also true for j by 

considering two cases. 

Case (a): 1( ( { }))j jF E j d    . By the Moore-

Algorithm, 1 { }j jE E j  . Hence 1| | | | 1j jE E   . 

We first show result (i). By the induction 

assumption, *

1 1| | | |j jE e  . Thus, *

1| | | | 1j jE e   . 

This, along with the fact that * *

1 1j je e    and 

* | |j je E ,  implies that * *

1| | | | 1j j jE e e    . 

We now show result (ii ) . Insert jp  into the 

string inequality (3) such that jp  satisfies 

1 1 | |1u u E j
h h j h hp p p p p

 

              (4) 

So we obtain that 
1 1( ) ( ,..., , , ,...,j j u uS E h h j h    

1| |)jEh


 and 1( ) ( )j jS k S k , for 1 k u  ; ( )jS k    

1( 1) { }jS k j   , for 1 | |ju k E   . Clearly, both 

1( ( ))jS k  and 1( ( 1) { })jS k j     are feasible since 

so is jE , for 11,2,...,| |jk E  . Note the fact that 

*( )jS k  either contains the job j or does not. 

Furthermore, by the induction assumption, either 
*

1( ) ( 1) { }j jS k S k j    or 
*

1( ) ( )j jS k S k  holds. 

Then by (4), we have that 1( ( ( )))jF S k    

1( ( ( 1) { }))jF S k j     if 1 k u  . Thus
*( )jS k    

1( )jS k S   for 1 k u  . For 1 | | 1ju k E    , 

by (4), we have that 1( ( ( )))jF S k    

1( ( ( 1) { }))jF S k j    . Thus *

1( ) ( 1)j jS k S k    

{ } ( )jj S k , for 1 | | 1ju k E    . For | |jk E  

1| | 1jE   , since there does not exist a feasible 

subset with 1| | 1jE    jobs of {1,2,…,j}, we have 

*

1 1(| |) (| |) { } ( )j j j j j jS E S E j S E    . These imply 

the result (ii ) . 

Case (b): 1( ( { }))j jF E j d    . By the Moore-

Algorithm, 1 { }\{ }j jE E j l  . Hence | jE | = | 1jE  |. 

We first show result (i). Suppose * *

1 1j je e   . Then, 

there exists a feasible subset with *

1 1je     jobs of 

{1,2, , j} , say * *

1( 1)j jS e    without loss of 

generality. Due to *

1 1| | | |j jE e  , * *

1( 1)j jS e    must 

contain the job j, and the other *

1je   jobs must be 

from 1,2, , 1.j j   Hence, the schedule 
* *

1( ( 1))j jS e    * *

1( ( ( 1) \{ }), )j jS e l j   , and the 

job j is an early job of the schedule. Then, 
* *

1( ( ( 1)))j j jd F S e        

* * * *

1 1 1( ( ( 1 ) \ { } ) ) ( ( ( ) )j j j j j jF S e j p F S e p           

1( ( { } ) )jF E j    follows from * *

1 1 1( )j j jE S e   . 

This contradicts with the given assumption 

1( ( 1) { }))j jF E j d     . Thus, * *

1| |j j jE e e   . 

Next we show result (ii ) . Inserting jp  into the 

string inequality (3), we obtain the string inequality 

(4). Let 1max{ | { }}l j jp p j E j   . There are 

three cases to consider as follows. 

 (b1)  If l j , then 1j jE E  , ( )j jS E       

11 1 | |( , . . . , , , , . . . , )
ju u Eh h j h h
 , and 1( ) ( )j jS k S k  for    

1 , 2 , . . . , | |jk E . As in case (a), we have that either 

*

1( ) ( 1) { }j jS k S k j    or *

1( ) ( )j jS k S k  holds 

for all k. By 1max{ | { }}j i jp p i E j   ,   

1 1( ( ( ))) ( ( ( 1) { }))j jF S k F S k j      for all k 

clearly. Thus *

1( ) ( ) ( )j j jS k S k S k   for all k. 

(b2) If 
0ul h with 0u u , then 1 { }j jE E j   

\{ }l ,
0 0 11 1 1 1 | |( ) ( ,..., , ,..., , ..., )

jj j u u u u ES E h h h h h h
     

and 1( ) ( )j jS k S k  for 0 1l k u   ; ( )jS k      

01( 1 ) \ { }j uS k h   for 0 1u k u   ; ( )jS k      

01( ) \ { } { }j uS k h j   for | |ju k E  . Notes the fact 

that 
kh jp p  for | |ju k E  . We have that 

1( ( ( ))) ( ( ( )))j jF S k F S k    for 1,2,...,k   | |jE . 

By similar arguments as in case (b1), we have 
*( ) ( )j jS k S k  for all k that follows from 

0j up p  

2max{ | { }}i jp i E j   . 

 (b3) If 
0ul h  with 

0 1u u  , then 1j jE E     

{ } \ { }j l , 
0 01 1 1 1( ) ( ,..., , , ,..., , ,j j u u u uS E h h j h h h        

1| |..., )
jEh


, and 1( ) ( )j jS k S k  for l k u  ; 

1( ) ( 1) { }j jS k S k j    for 01u k u   ;  

01( ) ( ) \{ } { }j j uS k S k h j   for 0 1 | |ju k E   . 

Notes the fact that 
0uh kp p  for 0 | |ju k E  . We 

have that 
01( ( ( ))) ( ( ( ) \{ } { }))j j uF S k F S k h j     
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for 0 1 | |ju k E   . Using the string inequality 

1 1 | | 11u u E j
h h j h hp p p p p

 

     , by similar 

arguments as in case (a), we have that 

1( ( ( )))jF S k 

*( ( ( )))jF S k  for l k u  and 

1( ( ( )))jF S k   *( ( ( )))jF S k  for 1 | | 1ju k E    . 

This implies that *( ) ( )j jS k S k  for all k and 

completes the proof.  

3 ACKNOWLEDGEMENT 

This research was supported in part by the Zhejiang 

Natural Science Foundation of China Grant 

Y6110054. 

REFERENCES 

[1] Moore, J. M. 1968. An n job, one machine sequencing 

algorithm for minimizing the number of late jobs. 

Management Science, 15, 102-109. 

[2] Pinedo, M. 2002. Scheduling: Theory, Algorithms, and 

Systems, second edition. New Jersey: Prentice Hall. 

[3] Pinedo, M. 2008. Scheduling: Theory, Algorithms, and 

Systems, third edition. New York: Springer Science + 

Business Media. 

[4] M.R. Garey and D.S. Johnson, 1979. Computers and 

Intractability, a Guide to the Theory of NP-Completeness. 

W.H. Freeman Company: San Francisco. 

[5] Shyh-In Hwang and Sheng-Tzong Cheng, 2001. 

Combinatorial Optimization in Real-Time Scheduling: 

Theory and Algorithms. Journal of Combinatorial 

Optimization. 5, 345-375. 

 

723




