
1 BACKGROUND

The single-machine problem of minimizing the

number of late jobs can be described as follows.

There is a set of n jobs, },,1{ nJ  , to be

processed on a single machine. Each job Jj has a

processing time jp , and a due date jd)(jj dp  .

In a given schedule, for each job Jj , we define

jC to be its completion time, and jU to be 1 if

jj dC  and 0 otherwise. We say that in a given

schedule job j is early if 0jU and late if

1jU . The problem is to find a non-preemptive

schedule that minimizes  

n

j jU
1

.

 This problem and its several variants have been

extensively studied in the production scheduling

literature. Moore (1968) gives an)log(nnO

algorithm for finding an optimal schedule for the

problem. For ease of presentation, this algorithm is

called Moore-Algorithm hereafter. Without loss of

generality, we assume that the jobs are indexed such

that ndd 1 . Furthermore, given a set of jobs

S , we define some notations as follows.

:)(S the schedule that jobs in S are se

quenced according to the Earliest Due Date First

rule.

|:| S the number of jobs in S .

:))((SF  the completion time of the last job of

the schedule)(S .

S is feasible if all the jobs in the schedule)(S

are early.

The Moore-algorithm is stated as follows.

Moore-Algorithm

Step 1. 0E , 0j and go to Step 2.

Step 2. If nj  , then go to Step 3. Otherwise,

1 jj ; compute jE as follows and return to

s

1 1

1

{ }, (({ }))

{ }\{ } otherwise

j j j

j

j

E j if F E j d
E

E j l

 



  
 


(1)

where l is a job in 1 { }jE j  satisfying

1max{ | { }}.l i jp p i E j   (2)

Step 3. STOP.

The schedule (((), \)n nE J E is the output of the

Moore-Algorithm, where the sequence of jobs in

\ nJ E is an arbitrary one.

Example 1. Consider four jobs {1,2,3,4}J  with

the following parameters.

Table 1: Problem instance of four jobs.

job 1 2 3 4

pj 5 4 3 2

dj 6 10 13 13

Minimum Total Processing Time Analysis for Moore-Algorithm

Wei Cai & Shanlin Li
Department of Mathematics, Taizhou University, Taizhou, Zhejiang, 317000, China

ABSTRACT: Moore (1968) gives an)log(nnO time algorithm to find an optimal schedule for the single-

machine number of late jobs problem. Pinedo (2002) points out, without giving a detail proof, that the early

job set generated by the Moore-Algorithm obtains not only the maximum number of jobs but also the smallest

total processing time among all optimal schedules. In this paper, we give a new optimality proof of the

Moore-Algorithm and show simultaneously that the statement of Pinedo is correct. This property may be

applied to study of the hard real-time systems.

KEYWORD: Production scheduling; single machine deterministic sequencing; algorithm; real-time system

International Conference on Industrial Technology and Management Science (ITMS 2015)

© 2015. The authors - Published by Atlantis Press 720

The schedule generated by the Moore-Algorithm

is 4 4((), \) (2,3,4,1)E J E  with
4

1
1jj

U


 .

Note that there may exist many optimal schedules

for the number of late jobs problem. For example,

there exist four optimal schedules: (1,2,3,4),

(1,2,4,3), (1,3,4,2), and (2,3,4,1) in the example

1. Then it seems to be an interesting issue what

characteristics the schedule by the Moore-Algorithm

has when compared with other optimal schedules.

This idea is motivated in part by two facts. One is

that Pinedo (2002) mentions in the optimality proof

of Moore-Algorithm that jE , for 1, ,j n ,

satisfies the following two conditions:

(i) jE has the maximum number of jobs among

all feasible subsets of {1, , }n .

(ii) Among all feasible subsets with | jE | jobs of

{1 , 2 , , j }, the jobs in ()jE have the smallest

total processing time.

But a detailed proof is not given. Recently Pinedo

(2008) provides a proof of condition (i). This seems

that condition (ii) is valid but not easy to prove.

Another fact is related to the problem of

nonpreemptive scheduling of n tasks on a single

processor of a hard real-time system. In a hard real-

time system, the computer is required to support the

execution of applications in which the timing

constraints of the tasks are specified. The correctness

of the system depends on the temporal correctness as

well as the functional correctness of the tasks.

Failure to satisfy the timing constraints can cause

catastrophic effects. For each task, the system have

the choices: either rejects it or accepts it. Once a task

is accepted by the system, the system should be able

to finish it under the timing constraint of the task. A

task i can be characterized as a triple of

(, ,)i i ir p d , representing the ready time, the

computation time, and the deadline of the task

respectively. A task cannot be started before its

ready time. Once started the task must use the

processor for a consecutive period of ip and be

finished by its deadline. The problem is NP-

complete (Garey and Johnson, 1979). Hwang and

Cheng (2001) explore the problem and propose an

optimal schedule such that the number of rejected

tasks is minimized, and then the finish time is

minimized for the accepted tasks. The complexity of

their scheduling algorithm in the worst case remains

exponential. Now we consider a special case of the

problem where ir is a constant. In the case, the

problem reduces to finding a non-preemptive

schedule that satisfies the conditions (i) and (ii),

where the set of the late jobs is treated as the set of

rejected tasks. If we can show that the schedule by

Moore-Algorithm satisfies the conditions (i) and (ii),

then the problem in the special case is polynomial

solvable.

In the next section, we show that the schedule by

the Moore-Algorithm satisfies conditions (i) and (ii).

2 A NEW ANALYSIS

We give the main result in this section. In the

following theorem, a new condition (ii) is

presented instead of the condition (ii), it is a more

concise description for the output of the Moore-

Algorithm than (ii) and implies (ii). For any j J ,

some additional notations are defined as follows.

()jE : the schedule that the jobs in jE are

sequenced according to the Shortest Processing

Time First rule.
*

je : the maximum number of jobs among all

feasible subsets of {1,2, , j} .
*()jS k : the feasible subset with the smallest total

processing time among all feasible subsets with k

jobs of {1,2, , j} , for 1,2,...,| |jk E .

Let 1 2 | |() (, ,...,)
jj j ES E h h h  ;

1 2(k) (, ,...,)j kS h h h for 1,2,...,| |jk E .When

0, ()jk S k is defined to be  . For example,

4 4() (4,3,2)S E  ; 4(1)S  {4} , 4(2) {4,3}S  ,

4(3) {4,3,2}S  ; 4(((1)))F S , 2 ,

4(((2))) 5F S  , 4(((3))) 9F S  in Example 1.

Theorem 1. For all j and k, the subset jE

generated by the Moore-Algorithm satisfies the

following two conditions:

(i)
*

j jE e .

(ii)
*() ()j jS k S k .

Proof: The proof consists of two steps. The first

step shows that the job sets 1 2, ,..., nE E E by Moore-

Algorithm are all feasible. We prove it by the

induction. 1E is obviously feasible. Assume that

1jE  is feasible. If 1(({ }))j jF E j d    ,

then 1j jE E  { }j , and 1() ((,)).j jE E j  

Therefore, jE is feasible. If 1(({ }))j jF E j d    ,

then 1j jE E   { }\{ }j l , and either

1() ()j jE E   (where l=j) or
1() ((\{ },)j jE E l j  

(where 1jl E ) holds. jE is feasible in the case

1() ()j jE E   naturally. Note first that 1 \{ }jE l

721

is feasible since so is 1jE  . In addition,

1(({ }\{ }))jF E j l   
1 1(())j j jF E d d   

follows from (2). Thus, jE is feasible in the case

1() ((\{ },)j jE E l j   .

The second step shows the results (i) and (ii) .

To prove this, assume that it is true for 1j  and

11 1 1 2 | |() (, ,...,)
jj j ES E h h h
   . By the definition of

1jS  , we have

1 2 | |1E j
h h hp p p



   (3)

Next we show that it is also true for j by

considering two cases.

Case (a): 1(({ }))j jF E j d    . By the Moore-

Algorithm, 1 { }j jE E j  . Hence 1| | | | 1j jE E   .

We first show result (i). By the induction

assumption, *

1 1| | | |j jE e  . Thus, *

1| | | | 1j jE e   .

This, along with the fact that * *

1 1j je e   and

* | |j je E , implies that * *

1| | | | 1j j jE e e    .

We now show result (ii) . Insert jp into the

string inequality (3) such that jp satisfies

1 1 | |1u u E j
h h j h hp p p p p

 

     (4)

So we obtain that
1 1() (,..., , , ,...,j j u uS E h h j h  

1| |)jEh


 and 1() ()j jS k S k , for 1 k u  ; ()jS k 

1(1) { }jS k j   , for 1 | |ju k E   . Clearly, both

1(())jS k  and 1((1) { })jS k j    are feasible since

so is jE , for 11,2,...,| |jk E  . Note the fact that

*()jS k either contains the job j or does not.

Furthermore, by the induction assumption, either
*

1() (1) { }j jS k S k j   or
*

1() ()j jS k S k holds.

Then by (4), we have that 1((()))jF S k  

1(((1) { }))jF S k j    if 1 k u  . Thus
*()jS k 

1()jS k S  for 1 k u  . For 1 | | 1ju k E    ,

by (4), we have that 1((()))jF S k  

1(((1) { }))jF S k j    . Thus *

1() (1)j jS k S k  

{ } ()jj S k , for 1 | | 1ju k E    . For | |jk E

1| | 1jE   , since there does not exist a feasible

subset with 1| | 1jE   jobs of {1,2,…,j}, we have

*

1 1(| |) (| |) { } ()j j j j j jS E S E j S E    . These imply

the result (ii) .

Case (b): 1(({ }))j jF E j d    . By the Moore-

Algorithm, 1 { }\{ }j jE E j l  . Hence | jE | = | 1jE  |.

We first show result (i). Suppose * *

1 1j je e   . Then,

there exists a feasible subset with *

1 1je   jobs of

{1,2, , j} , say * *

1(1)j jS e   without loss of

generality. Due to *

1 1| | | |j jE e  , * *

1(1)j jS e   must

contain the job j, and the other *

1je  jobs must be

from 1,2, , 1.j j  Hence, the schedule
* *

1((1))j jS e   * *

1(((1) \{ }),)j jS e l j   , and the

job j is an early job of the schedule. Then,
* *

1(((1)))j j jd F S e   

* * * *

1 1 1(((1) \ { })) ((())j j j j j jF S e j p F S e p       

1(({ }))jF E j   follows from * *

1 1 1()j j jE S e   .

This contradicts with the given assumption

1((1) { }))j jF E j d     . Thus, * *

1| |j j jE e e   .

Next we show result (ii) . Inserting jp into the

string inequality (3), we obtain the string inequality

(4). Let 1max{ | { }}l j jp p j E j   . There are

three cases to consider as follows.

 (b1) If l j , then 1j jE E  , ()j jS E 

11 1 | |(, . . . , , , , . . . ,)
ju u Eh h j h h
 , and 1() ()j jS k S k for

1 , 2 , . . . , | |jk E . As in case (a), we have that either

*

1() (1) { }j jS k S k j   or *

1() ()j jS k S k holds

for all k. By 1max{ | { }}j i jp p i E j   ,

1 1((())) (((1) { }))j jF S k F S k j     for all k

clearly. Thus *

1() () ()j j jS k S k S k  for all k.

(b2) If
0ul h with 0u u , then 1 { }j jE E j 

\{ }l ,
0 0 11 1 1 1 | |() (,..., , ,..., , ...,)

jj j u u u u ES E h h h h h h
   

and 1() ()j jS k S k for 0 1l k u   ; ()jS k 

01(1) \ { }j uS k h  for 0 1u k u   ; ()jS k 

01() \ { } { }j uS k h j  for | |ju k E  . Notes the fact

that
kh jp p for | |ju k E  . We have that

1((())) ((()))j jF S k F S k   for 1,2,...,k  | |jE .

By similar arguments as in case (b1), we have
*() ()j jS k S k for all k that follows from

0j up p

2max{ | { }}i jp i E j   .

 (b3) If
0ul h with

0 1u u  , then 1j jE E  

{ } \ { }j l ,
0 01 1 1 1() (,..., , , ,..., , ,j j u u u uS E h h j h h h    

1| |...,)
jEh


, and 1() ()j jS k S k for l k u  ;

1() (1) { }j jS k S k j   for 01u k u   ;

01() () \{ } { }j j uS k S k h j  for 0 1 | |ju k E   .

Notes the fact that
0uh kp p for 0 | |ju k E  . We

have that
01((())) ((() \{ } { }))j j uF S k F S k h j   

722

for 0 1 | |ju k E   . Using the string inequality

1 1 | | 11u u E j
h h j h hp p p p p

 

     , by similar

arguments as in case (a), we have that

1((()))jF S k 

*((()))jF S k for l k u  and

1((()))jF S k   *((()))jF S k for 1 | | 1ju k E    .

This implies that *() ()j jS k S k for all k and

completes the proof.

3 ACKNOWLEDGEMENT

This research was supported in part by the Zhejiang

Natural Science Foundation of China Grant

Y6110054.

REFERENCES

[1] Moore, J. M. 1968. An n job, one machine sequencing

algorithm for minimizing the number of late jobs.

Management Science, 15, 102-109.

[2] Pinedo, M. 2002. Scheduling: Theory, Algorithms, and

Systems, second edition. New Jersey: Prentice Hall.

[3] Pinedo, M. 2008. Scheduling: Theory, Algorithms, and

Systems, third edition. New York: Springer Science +

Business Media.

[4] M.R. Garey and D.S. Johnson, 1979. Computers and

Intractability, a Guide to the Theory of NP-Completeness.

W.H. Freeman Company: San Francisco.

[5] Shyh-In Hwang and Sheng-Tzong Cheng, 2001.

Combinatorial Optimization in Real-Time Scheduling:

Theory and Algorithms. Journal of Combinatorial

Optimization. 5, 345-375.

723

