
1 INTRODUCTION 

In 1998, Pecora and Carroll [1] proposed master 
stability functi amount of work has been devoted to 
the study of synchronization in complex networks. 
Meanwhile, many control methods have been 
developed to drive complex networks to synchronize 
such as pinning control [2-8], intermittent control [9-
13]

 
and so on. 

In some networks circumstance, delayed 
couplings can be ignored on some links in the 
complex network, and others caused by traffic 
congestions and long distance between two nodes 
are significant, and must be considered. In [12-16], 
the synchronization in complex networks with both 
non-delayed and delayed couplings has been 
investigated. Further, for neural networks with 
multiple time-varying delays, Zhang investigated its 
the global asymptotic stability, and obtained less 
conservative results[17,18].  

Intermittent control has been widely used in many 
fields of application. Yang et al.[9] considered a 
coupled neural network model with diffusively 
couplings and stochastic perturbations by utilizing 
intermittent control, and obtained several sufficient 
conditions ensuring exponential synchronization. In 
[10], intermittent control was extended to study a 
complex network with time-varying discrete delayed 
coupling. In [11], the exponential synchronization 
for a class of complex networks with finite 
distributed delayed coupling is studied via 
periodically intermittent control, in which the 
synchronized state is a non-decoupled state. To the 

best of our knowledge, the existing synchronization 
schemes only have one delay. 

In the paper, periodically intermittent control 
methods are used to investigate a synchronization 
scheme for complex delayed dynamical networks 
with non-delayed and delayed couplings, including 
system delay and coupling delay, and some 
exponential synchronization criteria are derived 
when the coupling matrixes are nonsymmetric. The 
proposed scheme is more close to the reality and is 
suitable for a broader range of applications. 
Moreover, for a class of complex delayed dynamical 
networks, some sufficient conditions are obtained to 
ensure global exponential synchronization. A 
numerical simulation gives effectiveness of the 
scheme. 

2 PRELIMINARIES 

Consider a complex dynamical network of N  
identical coupled nodes, which is described by 
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where 1 2( ) ( ( ), ( ), , ( ))T

i i i int x t x t x tx
n R  is the 

state vector of the ith delayed dynamical node, 

: n nf R R  is a continuous vector-valued 

function, 0c  and 1c  are the strength of the non-
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delayed and delayed couplings; n nR  is the 

inner coupling matrix; the delays 0  and 1  are 

bounded constants; ( )ij N Na A  and ( )ij N Nb B  

are the non-delay and delay 1  coupling matrixes, 

respectively, where ija  and ijb  are defined as 

follows: if there is a non-delayed coupling link from 

node i  to node j  ( j i ), then 0ija  ; otherwise, 

0ija  ; if there is a delay 1  coupling link from 

node i  to node j  ( j i ), then 0ijb  ; otherwise, 

0ijb  . In addition, let us assume that A  and B  

are diffusive matrixes, satisfying 
1

=0; 
N
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1

=0 ( 1,2, , )
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ij

j

b i N


 . A  and B  are seen as two 

coupling matrixes for sub-networks in one complex 
network. 
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  ( 0 1  ) is called the rate of control 
duration, T  is the control period, T  is called the 

control width and (1 )T  is called non-control 

width. id  is a positive constant called control gain, 

{0,1,2,...}m N   . 

For Eq.(1), its initial conditions are given 

by ( )i tx , [ ,0]t   , where 0 1max( , )   . Assume 

that Eq.(1) has a unique solution with respect to 

initial conditions. Let that ( ) nt s R  is a solution of 

an isolated node, satisfying  

( ) ( ( ), ( ))t t t  s f s s 0 .                     (3) 

If 
2

lim ( ) ( ) 0,i
t

t t


 x s , the control dynamical 

network (1) is said to achieve synchronization. 
Define error vector as  

( ) ( ) ( ),( 1,2, , )i it t t i N  e x s .             (4) 

From Eqs. (1), (2), (3) and (4), we can obtain the 
following error system: 
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Next, we present some hypothesises and lemmas 
for later use. 

Hypothesis 1[11] There exist a constant 1L  and 

a positive constant 2L  such that f  satisfies the 

following inequality:  
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for any , nx y R .  
Lemma 1 [19]  Let X  and Y  be arbitrary n-

dimensional real vectors, K  be a positive definite 

matrix, and n nP R . Then, the following matrix 
inequality holds: 

T T 1 T T2  X PY X PK P X Y KY . 

Lemma 2 [20] Let eigenvalues of the matrix A  

have 1 2, ,..., n   , and let eigenvalues of the matrix 

B  have 1 2, ,..., m   , then .n m eigenvalues of the 

matrix A B are ( 1,2,..., ; 1,2,i j i n j    ..., )m . 

where  is Kronecker product. 

3 SYNCHRONIZATION CRITERIA OF 
COMPLEX DYNAMICAL NETWORKS WITH 
NON-DELAYED AND DELAYED 
COUPLINGS VIA INTERMITTENT CONTROL 

In the following, we first give exponential 
synchronization criterion of the scheme with linear 
feedback controllers. 

Now assume that 
2

T
s 


A A
A  and 

2

T 


B B
B , 

where A  is a modified matrix A  via replacing 

the diagonal elements iia  by min( ) iia



, || ||   , 

min  is the minimum eigenvalue of the matrix 

2

T  
. Where || . ||  denotes the Euclidean norm. 

Theorem 1 Suppose that Hypothesis 1 holds. If 

there exist positive constants  , k  and id , 

( 1,2,..., )i l ,such that 

1) 1
1 0( ) + -

2

s

N

c k
L c  0+ + I A D < , 

2) 2L  + , 

3) 2( )(1- ) > 0    + , 

Where NI  is a unit matrix of order N , 

1 2( , ,..., )Ndiag d d dD = , 1
max 1 0(( ) + )

2

s

N

c k
L c   + I A , 

c, and   is the unique positive solution of the 

equation 22 2( )exp{ } 0L        . Then the 

control dynamical network (1) globally 
exponentially synchronizes.  
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First, we show that   is the unique positive 

solution of the above equation. 

Denote 2( ) 2 2( )exp{ } 0g L          , 

Since 2L  + , 2 0 0L   , , we obtain 

2(0) 2 2( ) 0g L      , lim ( )g





  , and 

( ) 0g   . Hence,   is the unique positive 

solution of the equation: 

 22 2( )exp{ } 0L        . 

Proof: We assume the candidate Lyapunov 
function:  
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By differentiating the ( )V t  along the trajectories 

and using Eqs, using (2), (4), (5) and Hypothesis 1, 
we can obtain 
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Here 1 2( ) ( ( ), ( ),..., ( ))T

Nt t t te = e e e . From Lemma 

1 and Lemma 2, we have 
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Note that 1( )W t M , from Eq. (12)      

1 0( )W t M   , 1 1( )W t M   . 

1 2( ) ( 2 2( )exp{ }) 0Q t L M           

1( ) 0Q t  . This leads to a contradiction with the 

Eq. (11). Hence, Eq. (10) holds. 
Now, we prove that  
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Note: 

(1) if 1 1 1T t t     , then 1 0 1T t t     , 

FormEq.(15), 
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1 1( ) 0P t  .This leads to a contradiction with the 

Eq. (14). Hence, Eq. (13) holds. 
From the above analysis, we can obtain 
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2( ) exp{2( )( 2 )}

P t W t t V t

M t T

 

     

    

     

2 2( ) 2( ) exp{2( )( 2 )}W t M t T           
 

2 2 22 ( ) + 2 exp{ } ( )W t L W t     0  

2 12 exp{ } ( )W t    . 

For 2 2t T  , 

2exp{2( )( 2 )} exp{4( )(1 ) }M t T M T            . 

Obviously, 

2( ) < exp{2( )(1 ) }

< exp{4( )(1 ) }

W t M T

M T

    

   

   

 

0
,  

And 

2 1( ) < exp{2( )(1 ) }

< exp{4( )(1 ) }

W t M T

M T

    

   

   

 
. 

2 2 2( ) ( 2 2( )exp{ })

exp{4( )(1 ) } 0

P t L

M T

   

   

     

  
.  

It contradicts the Eq. (21), so Eq. (20) holds. 

775



By induction, we can derive the following 
estimation of ( )W t  for any integer m . 

For ( ) )mT t m T   , 

( ) exp{2 ( )(1 ) }W t M m T                  (23) 

and for ( ) ( 1)m T t m T     

( ) exp{2( )[ ( 1) ]}W t M t m T                (24) 

For any 0t  , there exists a nonnegative integer 
m , such that ( 1)m T t m T    , we can rewrite 

Eqs. (23) and (24): 

For ( ) )m T t m T    , 

( ) exp{2 ( )(1 ) }

exp{2( )(1 ) }

W t M m T

M t

   

   

  

  
, 

and for ( ) ( 1)m T t m T     , 

( ) exp{2( )[ ( 1) ]}

exp{2( )(1 ) }

W t M t m T

M t

   

   

   

    

Hence, 

exp{ } ( ) exp{2( )(1 ) }t V t M t       . 

Let 1  , ( ) exp{ ( 2( )(1 )) }V t M t        . 

So 2( )(1 ) 0       , the conclusion of the 

theorem 1 holds. The proof is complete. 
Next, we analyze the synchronization conditions 

for the scheme. 

Let 1
1 0= ( ) +

2

s

N

c k
L c P + + I A , P  is a 

symmetric matrix. Obviously, as long as all id  are 

sufficient large, 1
1 0( ) +

2

s

N

c k
L c  + + I A D  is a 

negative definite matrix, i.e. 

1
1 0( ) + -

2

s

N

c k
L c  0+ + I A D <

 
meets condition 1) 

of Theorem 1. Therefore, the control dynamical 
network (1) synchronize.  

As seen from above assumptions and proof, when 
A  is a symmetric matrix, the controlled dynamical 
network (1) globally exponentially synchronizes. 

4 NUMERICAL SIMULATION 

In this section, a numerical simulation is given to 

verify the effectiveness of the proposed 

synchronization scheme. A scale-free network with 

100 nodes is selected as the non-delayed coupling 

network. The scale-free network is constructed using 

the Barabási-Albert model with 0 6m   starting 

nodes. A nearest-neighbor network with 100 nodes 

is selected as the delayed coupling network, whose 

node degree is 4. The inner coupling matrix   is a 

unit matrix of order n . Dynamical system on each 

node is the delayed Chua’s circuit [12].  

The delayed Chua’s circuit is described by   

1 2

( ) ( ( ), ( ))

( ) ( ( )) ( ( ))

t t t

C t g t g t

 

    

x f x x

x x x
.          (25) 

  Where 3

1 2 3( ) ( ( ), ( ), ( ))Tt x t x t x t x R ,  

3

1 1 1( ( )) ( ( )(| ( ) 1| | ( ) 1|),0,0)
2

Tg t a b x t x t


      x R ,  

3

2 1( ( )) (0,0, sin( ( )))Tg t x t     x R , 

(1 ) 0

1 1 1

0

b

C

 

 

  
 

 
  

= .  

10  , 19.53  , 0.1636  , 1.4325a   , 

0.7831b   , 0.5  , 0.2  . It is easy to verify 

that  

T

0 0( ) [ ( ( ), ( )) ( ( ), ( ))]t t t - t t - ie f x x f y y  

' T

max ( ),0,( ( ) )
22

)) ( (
T

a bdiag tk t








  
i i

C + C
e e

'
( ) diag(0,0, ) ( )

2

Tt t
k

 
 


  i ie e . 

Let 1 x

'

ma ( (
2

( ),0, ))
2

T

aL dia kg b
 

 


 
C + C

,  

2 '2
L

k

 
 . By choosing ' 2k  , we have 1 11.83L   

and 2 0.488L  . Hence, f  satisfies Hypothesis 1. 

Select 0 10c  , 1 0.1c  , 1k  , = 25 , then 

1
max ( ) 1.953

2

T Tc

k
   B B   . 

max 1((L  +
 

1
0) + ) 12.33

2

s

N

c k
c  I A , 1

1
2

c k
= L + + 51.88 . 

For 0 = 0.02 , 
1 = 0.04 ( = 0.04 ), solution of the 

equation 22 2( )exp{ } 0L         is 

32.2586  . Computing 1
2( )




 
 

+
0.5679 ,  

let 
0.12

0.6
0.2

T

T


    . In order to avoid selecting 

too large id , we adopt adaptive control scheme with 

adaptive controllers (25). By using Runge-Kutta, we 

choose initial values: (0) (2,1,3)s , 

(0) (( 1) (2 0.1 ),i

ix i   ( 1) (1 0.1 ),i i  ( 1) (3 0.1 ))i i  , 

(0) 1id  , 1i  . Figs. 1(a), 1(b), 1(c) show 

evolution trends of errors.  
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(a)                      (b) 

                        
(c) 

Fig. 1 Evolution trends of 1 2 3, ,i i ie e e   of error components, 

1 100i  . 

5 CONCLUSIONS 

In this paper, we introduce the scheme for complex 
delayed dynamical networks with two couplings via 
periodically intermittent control. Some exponential 
synchronization criteria are obtained, and the derived 
results are less conservative. The scheme is suitable 
for a broader range of applications. Finally, a 
numerical simulation shows effectiveness of the 
scheme.  
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