
1 INTRODUCTION 

In many engineering areas, chaos theory have lots of 
useful applications, such as secure communication, 
digital communication, power electronic and power 
quality, biological systems, chemical reaction 
analysis and design, and information processing. 
Synchronization of chaotic systems has become one 
of the most interesting subjects in chaos theory [1-4]. 
In recent years, various effective techniques have 
been presented to achieve chaos synchronization [5-
7]. Also, there are many practical examples of 
impulsive control systems. Three typical examples 
are the population control system of a kind of insects 
with the number of insects and their natural enemies 
as state variables, a chemical reactor system with the 
quantities of different chemicals server as the state, 
and a financial system with two state variables of the 
amount of money in a market and the saving rates of 
a central bank [8]. In this paper, a sufficient 
condition on the stability of impulsive control 
financial risk systems are presented, the theory of 
impulsive control is used to show the new 
financial risk model can be stabilized by discrete 
moments. 

The new financial risk model is described by [9]  

x yz ax

y xz by

z cz xy

 


 
  

                         (1) 

which x describes the first stage risk of the 
financial system, y  describes the second stage risk 
of the financial system, z  describes the third 

stage risk of the financial system, a , b  and c  
describe each stage risk intensity of the financial 
system, and the system (1) is chaotic for the 
parameters 5a  , 9b  , 1c   (see Figs.1).  

For system (1), we has 
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Therefore, the system (1) is one dissipative 
system. A volume element 0V  is apparently 
contracted by the flow into a volume element 13

0e
tV   

in time t .It means that each volume containing the 
trajectory of this dynamical system shrinks to zero as 

t  at an exponential rate 13 . So, all this 
dynamical system orbits are eventually confined to a 
specific subset that have zero volume, the 
asymptotic motion settles onto an attractor of the 
system(1). The Lyapunov exponent spectrum of 
system (1) is found to be 1 0.7680L  , 2 0.0056L   , 

3 2.8232L    for initial value (1, 2, 1). The 
Lyapunov dimension is 0.2700LD  , which means 
that the system (1) is really a dissipative system, and 
the Lyapunov dimension of this system is fractional. 
The fractal nature of an attractor does not merely 
mean this system has non-periodic orbits; it also 
causes nearby trajectories to diverge. Fig.2 displays 
the maximum Lyapunov exponent spectrum of the 
system for [0,8]a . It is clear that there are some 
periodic windows in Fig.2. However, this periodic 
window is very important in the evolution of the 
dynamics system(1). 
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Fig.1. the new financial risk chaotic system 

 

Fig.2. maximum Lyapunov exponent spectrum 

    [ 0 , 8 ]a  

2 SYNCHRONIZATION OF FINANCIAL RISK 
DYNAMIC SYSTEM BY IMPULSIVE 
CONTROL 

In this section, we study the impulsive control of the 
new financial risk chaotic systems (1). 

Let the new financial risk chaotic systems (1) as 
follows 
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Suppose that a discrete instant set  kt  satisfies  
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then an impulsive system is given by 
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where 
kB  is impulsive control matrix. 

Now, we consider bidirectionally coupled 
impulsive control of chaotic systems in the form as 
follows: 
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Remark 1. In comparison with those of existing 
discussion, here, the two chaotic systems (3) and (4) 
are bidirectionally coupled different impulsive 
control matrix, which is different with the references 
[7][8][10]. 

Let 

( , ) ( , ) ( , )F t Y F t X M X Y e                  (5) 

where M  . 
Subtracting (3) from (4) and considering (5), we 

have 
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where  
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The objective is to find some conditions on the 
impulsive control matrix k kC B  and the impulsive 
distances 1 kk tt , ,,2,1 k  such that the 
impulsive error system (6) is asymptotical stable at 
origin.  

Theorem 1. The systems (3) and (4) can realize 
impulsive synchronization using the following form 
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Proof: Let the candidate Lyapunov function be in 
the form of 

1
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The time derivative along the trajectory (6) is 
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This implies that 
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Now from (6), we have 
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From the assumptions given in the theorem  
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From Ref. [10], this implies that the origin in 
system (6) is globally asymptotically stable or the 
slave system is synchronized with the master system 
asymptotically for any initial conditions.  

3 SIMULATION AND RESULTS 

In simulations, the initial conditions of the master 

and slave systems are (1,1,1) and (1,1,1), 

respectively.. We choose the gain matrices 

3k kC B , kB ( ,2,1k ) is a constant matrix 

( 0.5, 0.6, 0.7)kB diag    , then 16.0k . Let 

1.5  , from 0)(ln 1  kkk tt , then the 

solutions 1 0.0408k kt t    are obtained for 

35  , we let 1 0.04k kt t   .We introduce the 

quantity 2

3

2

2

2

1)( eeetE  , which is used to 

measure the quality of the control process. It is 

obvious that when )(tE  no longer increases, two 

chaotic systems achieve synchronization. In Fig.3, 

three state errors versus time are shown and the state 

errors tend to zero asymptotically as time evoles. 

 

Fig.3. Synchronization errors with time t  

4 CONCLUSION 

In this paper, we use impulsive control theory to 
impulsively control the new financial risk chaotic 
systems, sufficient conditions are derived for the 
synchronization of the new chaotic systems, 
numerical simulations are then given to verify the 
effectiveness of the proposed schemes.  
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