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Abstract. This paper is mainly discussed  almost sure exponential stability for mild solution of 
neutral stochastic hybrid evolution systems. Some conditions ensured the stability of mild solution 
of the systems are given. The earlier results are generalized and improved.  

Introduction  
     The study of  stochastic evolution systems  has attracted the considerable attention, which are 
applied to many field such as chemistry, biology and physics [1,2]. At present, many dynamical 
behavior of the solutions  of semilinear  stochastic systems has been given. For example, [3] 
discussed  exponential stability of mild solutions of stochastic partial systems with delays by fixed 
point theory.  [4] studied  approximate mild solutions of fractional stochastic evolution  systems  in 
Hilbert spaces.[5] studied  evolution systems driven by general stochastic measures in Hilbert space.  
     On the other hand, in the real world, the systems often include the present state and the 
derivative of the  state, which are described by neutral systems. Dynamic behavior of the neutral 
stochastic systems has been studied. [6] discussed  existence and uniqueness of mild solutions to 
neutral stochastic partial functional systems under non-Lipschitz coefficients. [7] also discussed the 
existence of mild solutions of neutral semilinear stochastic functional  systems under local non-
Lipschitz coefficients. [8] discussed exponential stability for semilinear neutral stochastic systems 
with delays by integral inequality. Luo et al. [9, 10] discussed stability for stochastic neutral partial 
differential systems by fixed point theory. [11] discussed asymptotic behavior for second order 
delay stochastic evolution systems. Besides, stochastic hybrid evolution systems drived by jumps 
have been also discussed extensively. [12] discussed exponential stability for neutral stochastic 
partial systems with jump. [13] discussed  stability of mild solutions for second-order neutral 
stochastic evolution systems derived by Poisson jumps. Motivated by the above paper, in the paper 
we discussed almost sure exponential stability of neutral stochastic hybrid evolution systems by 
employing some integral inequalities. 
     The rest of the paper is organized as follows. In Section 2, mild definition and some useful 
lemmas are  introduced. In Section 3, we establish almost sure exponential stability for neutral 
stochastic hybrid evolution systems. 
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Preliminaries 
Let Γ and Υ  be two real, separable Hilbert spaces and  ),( ΓΥL  be the space of bounded linear 

operators fromΥ  toΓ . For the sake of convenience, we shall use the same notation || ⋅  || to denote the 
norms in Γ  , Υ  and ),( ΓΥL  without any confusion.  Let ),,( PΞΩ  be a complete probability space 
equipped with some filtration tΞ  ( 0≥t ) satisfying the usual conditions.  
     Let ),(0

2 ΓΥL  denote the space of all Q-Hilbert-Schmidt operators ),( ΓΥ∈ Lσ . For the definition of 
an Γ -valued stochastic integral of an ),(0

2 ΓΥL -valued and tΞ -adapted predictable process with 
respectd to the Q-Wiener process w(t), the readers can refer to [2]. dvdzdzdvNdzdvN )(),(),(~ λ−= , 
which is independent of w(.) and is called the compensating martingale measure [1]. 
Let )],0,([ Γ−τC be the space of all right-continuous functions with left-hand limit ϕ . 

)],0,([ Γ−= ΞΞ τbb
tt

CC be the family of all almost surely bounded, tΞ  ( 0≥t )-measurable and )],0,([ Γ−τC -
valued random variables. A−  is a closed, densely defined linear operator generating an  analytic 
semigroup )0)(( ≥ttS  on a separable Hilbert space  Γ , then it is possible under some circumstances 
to define the fractional power  Γ→−− ))((:)( αα ADA [2].  
     Consider the following neutral stochastic hybrid evolution systems: for ),0[ +∞∈t  

=−− )))]((,()([ ttxtDtxd d  dtttxtftAx )))]((,()([ ζ−+ ] 
                       + )))((,( ttxtg ς− d )(tw  

                                ∫ −+
Z

dzdtNzttxth ),(~))),((,( h            (1)          

with vCx
0

)(0 Ξ∈=⋅ ϕ ,where ϕ  is 0Ξ -meansurable and ,d ,ζ  )0](,0[).0[:, >→∞+ ττhς are bounded and 

continuous functions ,),0[: Γ→Γ×+∞f ),,(0
2),0[: ΓΥ→Γ×+∞ Lg Γ→×Γ×+∞ Uf ),0[: are three suitable 

measurable mappings. 
Definition 1.  ),[),( +∞−∈ τττx , is called a mild solution of the system (1), if ( )x t  is a tΞ  ( 0≥t ) 

adapted process and Γ∈)(τx  has a continuous paths on ),0[ +∞∈t almost surely, 
x( ) ( )( (0) (0, ( (0)))) ( , ( ( )))d d= − − + −t S t x D x D t x t t  

0
( ) ( , ( ( )))d+ − −∫

t
AS t s D s x s s ds  

0
( ) ( , ( ( )))ζ+ − −∫

t
S t s f s x s s ds  

0
( ) ( , ( ( ))) ( )ς ω+ − −∫

t
S t s g s x s s d s  

0
( ) ( , ( ( )), ) ( , ).h+ − −∫ ∫ t

Z
S t s h s x s s z N ds dz            (2) 

Lemma 1. If 0 -A（ ）ρ∈ , then for (0,1]α ∈  
(i)There exist 1≥M  and 0β > such that ( ) , 0β−≤ ≥� � � �tS t h Me h t , for any ∈Γh . 
(ii) ( ) ( ) , 0α β α

α
− −− ≤ >� � � �tA S t h M e t h t , for any ∈Γh , where 1, (0,1]M α α≥ ∈ . 

Lemma 2. Let ( ( ) ≤� �S t M . For all 0≥t  and let 0
2: [0, )ϕ +∞ → L  be a predictable, Ξt -adapted process 

such that 0
20

( )ϕ < +∞∫ � �
t p

L
E s ds  for some integer 2>p  and any 2≥t . Then, there exists a constant 

( ) 0>c p  such that for any fixed number 0>N t , 

1
{ sup ( ) ( ) ( ) }ϕ ω

≤ ≤ +
−∫� �

t p

NN t N
E S t s s d s  

0
2

1
( ) ( ) .ϕ

+
≤ ∫ � �

N p
LN

c p E s ds  

Lemma 3. (Kunita’s first inequality) For any 2≥p ,  let 
0

( ) ( , ) ( , ),
t

Z
I s h s x dN ds dx= ∫ ∫  there exists a 

constant ( ) 0>D p such that 

{ 2 /2

00
(sup ( ) ) ( ) ( ( , ) ( ) )

tp p

Zs t
E I s D p E h s x dx dsλ

≤ ≤
≤ ∫ ∫         }0

( ( , ) ( ) ) .
t p

Z
E h s x dx dsλ+ ∫ ∫                                                              
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     To obtain the stability of mild solutions to (1), we give the following conditions:  
1( )H  For any ,x y∈Γ  and 0t ≥ , there exist two positive constants 

1 2
, 0C C >  such that  

1( , ) ( , ) ,f t x f t y C x y− ≤ −� � � �   0
2

2( , ) ( , ) ,
L

g t x g t y C x y− ≤ −� � � �  
/ 22

3

( , , ) ( , , ) ( ) ( ( , , ) ( , , ) ( ))

,

pp

Z Z
p

h t x z h t y z dz h t x z h t y z dz

C x y

λ λ− ∨ −

≤ −

∫ ∫
� �

 

and ( ,0) ( ,0) ( ,0, ) 0f t g t h t z= = = . 
2( )H  For any ,x y∈Γ  and ( , ) (( ) )D t D A α⋅ ∈ − , there exists a positive constants 4 0C >  such that for 
1

( ,1]( 2)α ∈ ≥p
p 4( ) ( , ) ( ) ( , ) , ( ,0) 0, 0,A D t x A D t y C x y D t tα α− − − ≤ − = ≥  

3( )H For 1
( ,1]( 2)α ∈ ≥p
p

, 
4

( ) 1ακ −= − <A C . 

Remark 1. Under 1 3( ) ( )H H− ， (1) obviously has a trivial solution. 

Main results 
     In this section, we will utilize some inequalities to derive some sufficient and verifiable 

conditions ensuring the almost sure exponential stability [3] for mild solution to (1). By [8, 13] we 
know that under 1 3( ) ( )H H− ，  (1) is ( 2)≥p -moment exponential stable with some Lyapunov 
exponent µ , i.e. ( ) p tE x t Me µ−≤         

Theorem 1. Supposed that the conditions 1 3( ) ( )H H−  are satistied with 2>p , then the mild 
solution to (1) is almost sure exponential stable , i.e. 

log ( )
lim ,

2
x t
t pt

µ
≤ −

→ +∞
  a.s.  

Proof . Let N be a sufficiently large positive integer and for [ , 1]t N N∈ + , then 
( ) ( )( ( ) ( , ( ( ))))

     ( , ( ( )))

     ( ) ( , ( ( )))
t

N

x t S t N x N D N x N N
D t x t t

AS t s D s x s s ds

d
d

d

= − − −
+ −

+ − −∫

 

     
( ) ( , ( ( )))

( ) ( , ( ( ))) ( )

t

N
t

N

S t s f s x s s ds

S t s g s x s s d s

ζ

ς ω

+ − −

+ − −

∫
∫

 

     
0

( ) ( , ( ( )), ) ( , )
t

Z
S t s h s x s s z dN ds dzh+ − −∫ ∫  . 

 
For arbitrary fixed 0ε >

N
, we have  

{ }sup ( )
1

N
N t N

P x t ε
≤ ≤ +

>  

sup ( )( ( ) ( , ( ( ))))
1 6

N

N t N
P S t N x N D N x N N εd

≤ ≤ +

 ≤ − − − > 
 

 

sup ( , ( ( ))))
1 6

N

N t N
P D t x t t εd

≤ ≤ +

 + − > 
 

 

sup ( ) ( , ( ( ))))
1 6

t N
NN t N

P AS t s D t x t s ds εd
≤ ≤ +

 + − − > 
 ∫  

1
sup ( ) ( , ( ( ))))

6
t N
NN t N

P S t s f s x s s ds εζ
≤ ≤ +

 + − − > 
 ∫  

1
sup ( ) ( , ( ( )))) ( )

6
t N
NN t N

P S t s g s x s s d s ες ω
≤ ≤ +

 + − − > 
 ∫  

1
sup ( ) ( , ( ( )), ) ( , )

6
t N
NN t N

P S t s h s x s s z N ds dz εh
≤ ≤ +

 + − − > 
 ∫   
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1

6( ) sup ( )( ( ) ( , ( ( )))) pp

N t NN

E S t N x N D N x N Nd
ε ≤ ≤ +

 ≤ − − −  
 

1

6( ) sup ( , ( ( )))) pp

N t NN

E D t x t td
ε ≤ ≤ +

 + −  
 

1

6( ) sup ( ) ( , ( ( ))))
ptp

NN t NN

E AS t s D s x s s dsd
ε ≤ ≤ +

 
+ − − 

 
∫  

1

6( ) sup ( ) ( , ( ( ))))
ptp

NN t NN

E S t s f s x s s dsζ
ε ≤ ≤ +

 
+ − − 

 
∫  

1

6( ) sup ( ) ( , ( ( )))) ( )
ptp

NN t NN

E S t s g s x s s d sς ω
ε ≤ ≤ +

 
+ − − 

 
∫  

1

6( ) sup ( ) ( , ( ( )), ) ( , )
ptp

N ZN t NN

E S t s h s x s s z N ds dzh
ε ≤ ≤ +

 
+ − − 

 
∫ ∫   

5

1=

= ∑ i
i

I  

Note that ( ) p tE x t Me µ−≤ . By Lemma 1, we have ( )
( )1 1

6 1

1
p p N

p
N

I M M e eµτ µκ
ε κ

−
−

 
≤ + − 

. 

By 
2

( )H , we have ( )2

6 p p t N

N

I Me eµ µκ
ε

−≤ . By Lemma 1, Lemma 2, we have 

( ) ( ) ( ( ( )))3 1 4

6
1 1p p p p p q p q N

N

I M MC M q q eα µτ µ
α β α

ε
− −

−≤ Γ − − , ( )
( )

1
4

6 p p t
p N

p q
N

M MC eI e
q

µ
µ

ε β
−≤  

By Lemma 3, we have ( ) ( )5 2

6 p p p N

N

I M c p C eµτ µ

ε
−≤  and ( ) ( )6 3

6 p p N

N

I M D p C eµτ µ

ε
−≤ . Thus, 

1

5
{ sup ( ) } ( )p N

NHN τ N
N

P x τ K e µε
ε

−

≤ ≤ +
> <  

where  

( )

( ) ( ( ( )))

1

1 4

1

1

1 1

p p
p

p p p p q p q

K M M e Me

M MC q q e

µτ µτ

α µτ
α

κ κ
κ

β α

−

−
−

 
= + + − 

+ Γ − −

 

( ) ( )
( )

1
2 3

p p t
p p p

p q

M MC e M c p C e M C D p e
q

µ
µτ µτ

β
+ + +  

 Letting 2

N
p

N e
µ

ε
−

= , such that 

 { sup ( ) }2 2

1

6
N N

pp

N t N
P x t e Ke

µ µ− −

≤ ≤ +
> ≤ . 

Consequently, from the Borel-Cantelli Lemma , there exists a ( ) 0ω >T , for all ( )ω>τ T , we have  
-

2( ) ≤
mN

px t e ,  a.s. That is , log ( )
lim ,
t

x t
t p

µ
→+∞

≤ −
2

  a.s. The proof is completed. 

          When p=2, by Theorem 1, we have the following result. 
Corollary 1. Suppose that all the conditons of Theorem1 hold with with p=2 Then the mild 

solution of (1) is almost sure exponentially stble. 
If (1) has no neutral term, (1)  becomes the  following  stochastic evolution systems with jump:  

)(tdx dtttxtftAx )))]((,()([ ζ−+=      )()))((,( tdwttxtg ς−+               
           ∫ −+

Z

dzdtNzttxth ),(~))),((,( h                                                                                        

Similar to Theorem 1, we have  
Corollary 2. Suppose that all the conditions of Theorem 1 hold. Then  the mild solution of the 

above system without neural term is almost sure exponentially stble. 
Remark 2:  If (1) has no jump term, (1)  becomes neural stochastic evolution systems. From 

Theorem 1, we can also obtain the system without jump is almost sure exponentially stable.  
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Conclusions 
     In this paper, we have investigated almost sure exponential stability issue of  neutral stochastic 
hybrid evolution systems. To establish the criteria of almost sure exponential stability, we employ 
some useful integral inequalities and Borel-Cantelli Lemma. The result is generalized some earlier 
results. 
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