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Abstract. Inspired by the human vision system, neuromorphic vision systems simulating the 

mechanism of signal processing in retina are extensively investigated. This paper describes a silicon 

neuronal network with bio-inspired structure detects the edge information in image. The digital 

spiking silicon neuron (DSSN) and silicon synapse models are used to reproduce the neuron, synapse 

and their dynamic behaviors. The biological receptive fields are realized by the combination of 

excitatory and inhibitory synapses. Our silicon neuronal network is optimized for the hardware 

implementation. It is expected to have low hardware consumption and high running speed. The 

simulation results show that edge detection is successful in our network. 

Introduction 

Neuromorphic system performs based on the bio-inspired mechanism with efficient computation, 
high running speed and low power consumption. Biological studies indicate that the nerve cells in 
retina generate light sensitive spike trains response to intensity, temporal and spatial context [1]. 

Neuromorphic vision systems implementing the vision algorithms of retina and cortex on 
electronic circuits are extensively studied. A silicon retina applied as the intraocular retina prostheses 
mimics the role of neurons in retina and generates spiking signals [2]. Reference [3] introduced a 
dynamic vision sensor (DVS) on CMOS circuits which runs in the real-time and is sensitive to the 
temporal changes of the scene. The asynchronous spikes generated by the DVS are processed by the 
retina-inspired algorithms on software and field-programmable gate array (FPGA) infrastructure 
[4,5]. Reference [6] designed another CMOS-based vision sensor extracting the temporal contrast 
and grey level information. Combined with this vision sensor, [7] investigated an algorithm of image 
segmentation on FPGA device. Reference [8] proposed a fully digital solution of neuromorphic 
vision which runs in parallel structure with the low power consumption and the speedup computation. 
However, the neuron behaviors do not be considered in the above neuromorphic vision systems. The 
integrate-and-fire (IF) model in [9] describing the phenomenon of a spike with one simple differential 
equation are considered in many neuromorphic systems for its compact hardware implementation. 
Reference [10] realized a human vision similar neuromorphic with IF model based spiking neural 
network on graphic processing units (GPU). In our work, we will introduce a silicon neuronal 
network with complex neuron model to simulate the behaviors of neurons and neural network in 
retina.  Our silicon neuron network is built on FPGA device and designed for the edge detection.  

This paper is organized as follows: the information processing in vision sensor is explained in 

section II. Section III introduces the architecture of our silicon neuronal network. The neuron and 

synapse models are detailed. Their implementations are presented. Section IV shows the simulation 

results for edge detection and comparison with Laplacian operation. Discussion and the future plan 

are presented in section V.  
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Vision Sensor 

The retina is a multi-layered tissue and lines the back of the eye. It converts rays of light into 

electrical signals which are fed to the cortex by the optic nerve. The neurons in retina are organized 

into 5 types as shown in Fig.1. The photoreceptors in the first layer convert lights into nerve impulses 

which are transmitted to the bipolar neurons in the second layer and then to the ganglion neurons in 

the third layer. The neurons in the intermediate layers serve the space smoothing function because 

they connect neighbors. The horizontal neurons, for instance, receive large range of stimuli from the 

photoreceptors and transmit them to the bipolar neurons. And the amacrine neurons connect between 

the bipolar and the ganglion neurons. 

 

Fig. 1. Section of retina. 

The receptive field of a neuron refers to an area in the field of vision in which the stimulus will 

alter the activity of that neuron. Figure 2 shows the receptive fields and activities of three kinds of 

neurons: photoreceptor, bipolar neuron and ganglion neuron. The receptive field of photoreceptor 

corresponds to its location in the retina (A). The activity of photoreceptor shows a logarithm output 

(D). The receptive field of bipolar neuron is a concentric circular which is caused by two stimulus 

inputs coming from the photoreceptors and the horizontal neurons (B). This kind of receptive field 

contains center and surrounding regions which respond to the ray of light in opposite ways. The light 

in center trends to increase (decrease) the membrane potential which refers to the On-center 

(Off-center) bipolar neurons. Figure 2(E) shows the activities of these two types of neurons. When the 

center receives the light stimulus and the surrounding does not, the membrane potential is increased 

(decreased) in On-center (Off-center) neuron which refers to depolarization (hyperpolarization). And 

their activities reverse when the light stimulus illuminates in the surrounding not the center. The 

receptive field of ganglion neuron is similar to that of bipolar neuron(C). However, their activities are 

different. The ganglion neuron responds to the ray of light by firing frequency not the membrane 

potential in bipolar neuron. The firing frequency increases (decreases) for On-center (Off-center) 

neuron if only the center receives stimulus. And their activities reverse like the bipolar neuron. 
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Fig. 2. Receptive fields and activities of photorecptor(A,D), bipolar neuron(B,E) and ganglion 

neuorn(C,F). Parameters v in (E) and f in (F) are membrane potential and frequency, respectively. 

Silicon Neuronal Network 

Architecture 
Our silicon neuronal network reproduces neurons in the retina and their signal processing ways for 

the efficient image process. Because the receptive fields of bipolar and ganglion neurons are same as 

concentric circular, the horizontal and amacrine neurons serve the same function of space smooth, we 

consider the ganglion and amacrine neurons only in our network and suppose they receive stimuli 

directly from the photoreceptors. Figure 3 shows the structure of our silicon neuronal network. The 

image in the input layer is presented to the retina. The neurons (N
1
) in the layer 1 receive stimulus 

input which corresponds to the value of each pixel in the image. And (i,j) is the coordinate of pixel. 

The neurons (N
2

on and N
2

off) in the layer 2 represent the ganglion neurons with the same size of the 

image. Their receptive fields correspond to synaptic matrices (Won and Woff) with excitatory and 

inhibitory synapses which locate in center and surrounding respectively for the On-center neuron and 

locate in the opposite way for the Off-center neuron. The edge is detected due to N
2

on and N
2

off 

respond to the different stimuli in center and surrounding. 

 

Fig. 3. Structure of silicon neuronal network. 
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Silicon Neuron and Synapse Models  
The digital spiking silicon neuron (DSSN) is a 2-variable silicon neuron model which describes 

various neuron behaviors from the mathematical viewpoint [11]. It can reproduce both the Class I and 

II neurons in Hodgkin's classification [12]. The Class I neuron starts to response stimulus from a zero 

firing frequency. While the Class II neuron starts from a non-zero frequency. The DSSN model can 

show frequency sensitivity like the ganglion neurons in retina. The model is governed by following 

equations: 

 

𝑑𝑣𝑖,𝑗
𝑥

𝑑𝑡
=

𝜑

𝜏
(𝑓(𝑣𝑖,𝑗

𝑥 ) − 𝑛𝑖,𝑗
𝑥 + 𝐼0 + 𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

𝑥 ), (1) 

𝑑𝑛𝑖,𝑗
𝑥

𝑑𝑡
=

1

𝜏
(𝑔(𝑣𝑖,𝑗

𝑥 ) − 𝑛𝑖,𝑗
𝑥 ), (2) 

𝑓(𝑣𝑖,𝑗
𝑥 ) = {

𝑎𝑛(𝑣𝑖,𝑗
𝑥 + 𝑏𝑛)2 − 𝑐𝑛 𝑤ℎ𝑒𝑛 𝑣𝑖,𝑗

𝑥 < 0,

−𝑎𝑝(𝑣𝑖,𝑗
𝑥 − 𝑏𝑝)2 + 𝑐𝑝 𝑤ℎ𝑒𝑛 𝑣𝑖,𝑗

𝑥 ≥ 0,
 (3) 

𝑔(𝑣𝑖,𝑗
𝑥 ) = {

𝑘𝑛(𝑣𝑖,𝑗
𝑥 − 𝑝𝑛)2 + 𝑞𝑛 𝑤ℎ𝑒𝑛 𝑣𝑖,𝑗

𝑥 < 𝑟,

𝑘𝑝(𝑣𝑖,𝑗
𝑥 − 𝑝𝑝)2 + 𝑞𝑝 𝑤ℎ𝑒𝑛 𝑣𝑖,𝑗

𝑥 ≥ 𝑟,
 (4) 

 

where variables vi,j
x , ni,j

x and Istimi,j

x , x = 1,2 are the membrane potential, a slow variable, the stimulus 

input of the neurons in layer 1 and 2 and they are correspond to the pixel (i,j) in image. Variable I0 is 
the bias constant. Parameters φ and τ are time constants. Parameters r,ax,bx,cx, kx,  px, qx for x=n 
and p, are constants that control the silicon neuron's dynamics. Please see appendix for the parameter 
settings of the Class I and II modes. 

Our silicon synapse model based on the kinetic model in [13] describes the transmitter release and 

the post-synaptic current generation [14]. Its equation is, 

 
 

𝑑𝐼𝑠𝑖,𝑗
𝑥

𝑑𝑡
= {

𝛼(1 − 𝐼𝑠𝑖,𝑗
𝑥 ) [𝑇] = 1,

−𝛽𝐼𝑠𝑖,𝑗
𝑥 [𝑇] = 0,

 (5) 

 

where, 𝐼𝑠𝑖,𝑗
𝑥  and [𝑇] denote the post-synaptic current and the amount of the released transmitter per 

pre-synaptic spike, respectively. We defined [𝑇]  as 1 (0) when the membrane potential of the 
pre-synaptic neuron is over (under) a threshold. Parameters α and β are the forward and backward 
rate constants which describe the transition rates of the receptors between its closed state and open 
state. 

The stimulus input of neurons (N1), Istimi,j

1 , is calculated as follows: 

𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

1 = 𝑐1𝑥𝑖,𝑗 (6) 

where,  𝑥𝑖,𝑗 is the value of pixel (i,j) in the gray scale image. 𝑐1 is a constant to scale the stimulus 

input. The stimulus input of neurons (N
2
), 𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

2 , is governed by: 

𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

2 = 𝑐2𝑊𝑥 (

𝐼𝑠𝑖−1,𝑗−1
1 𝐼𝑠𝑖−1,𝑗

1 𝐼𝑠𝑖−1,𝑗+1
1

𝐼𝑠𝑖,𝑗−1
1 𝐼𝑠𝑖,𝑗

1 𝐼𝑠𝑖,𝑗+1
1

𝐼𝑠𝑖+1,𝑗−1
1 𝐼𝑠𝑖+1,𝑗

1 𝐼𝑠𝑖+1,𝑗+1
1

) (7) 

 

where, 𝑐2 is a constant. 𝑊𝑥 (x=on and off) are the synaptic matrices which represent the receptive 

fields of On-center and Off-center neuron, respectively. 

Hardware Implementation 
We build our silicon neuronal network on FPGA device. The neuron and synapse models shown in 

Eq.(1)-(5) are solved by Euler method. The step size is 0.000375. The values of parameters are 
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selected as power-of-2 numbers to reduce the hardware utilization. Therefore, the multiplications are 

replaced by shift operations. 

 

Fig. 4. Block diagrams of the vi,j
x (A), ni,j

x  (B), Isi,j
x (C) and Istimi,j

2 (D) circuits. 

Figure 4(A,B) show the block diagrams of  𝑣𝑖,𝑗
𝑥  and 𝑛𝑖,𝑗

𝑥  in DSSN model and the silicon neuron is in 

Class I. Symbols ×, + and MUX in the figure represent a multiplier, an adder and a multiplexer, 

respectively. A multiplexer selects one of input signals by the control signal and forwards the selected 

input into the output port. Values marked with * represent the multiplication that is realized by a right 

or a left shift operation. A multiplier is shared by all the × because their inputs are same. The DSSN 

model costs 1 multiplier, 10 adders and 5 multiplexers. Figure 4(C) shows the block diagram of 𝐼𝑠𝑖,𝑗

𝑥  in 

silicon synapse model. It costs 2 adders and 1 multiplexer. The stimulus input(𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

1 ) is fed to our 

network directly as the input, while input(𝐼𝑠𝑡𝑖𝑚𝑖,𝑗

2 ) calculated by Eq.(7) is realized by 4 adders as 

shown in Fig.4(D) when we set Won={0,-1,0;-1,4,-1;0,-1,0} 

Simulation Results 

We simulated our silicon neuronal network with C++ programs to estimate its performance of edge 

detection. The gray image shown in Fig.5(A) with 512×512 pixels is presented to our network. The 

neuron N
1
 responds to stimulus input governed by Eq.(6). Constant 𝑐1  is 0.0625. The synaptic 

matrices Won and Woff simulating the On-center and Off-center type receptive fields are defined as 

{0,-1,0;-1,1,-1;0,-1,0} and {0,0.25,0;0.25,-1,0.25;0,0.25,0}, respectively. The stimulus input for 

neuron N
2
 is obtained by multiply the post-synaptic currents as shown in Eq.(7). The constant 𝑐2 is 

0.25. We calculate the firing rate of N
2
 and normalize it to denote the edge information. The high rate 

denoted by bright spot refers to the edge with high contrast. The low rate denoted by the dark spot 

refers to the edge with low contrast. Figure 5(B,C) are the firing rate map of our silicon neuronal 

network when On-center and Off-center receptive fields are configured, respectively. As we can see, 

the results of both On-center type and Off-center type show the edge information of the original 
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image. However, both of them detect some fake edges and lose some real edges. The On-center type 

detects more details than the Off-center. The results of Laplacian operation are shown in Fig.5(D). 

 

Fig. 5. Silicon neuronal network(SNN) for edge detection and Laplacian operation. Plane (A) is the 

original image. Planes (B,C) are the firing rate map of silicon neuronal network with On-center and 

Off-center type receptive fields. Plane (D) is the result of Laplace operation. 

Discussion  

Our silicon neuronal network simulated the mechanism of signal processing in the retina. The 
ganglion neuron is described by the DSSN neuronal model which shows various neuronal behaviors. 
And the silicon synapse model is used to represent the precise behaviors of the neuron and to realize 
On-center and Off-center receptive fields. Our silicon neuronal network is optimally designed for the 
hardware implementation. Its parameters are selected to power of two numbers to save the cost. The 
edge detection is successful in our network when silicon neurons included in it are configured into 
Class I. However, our network also detects some fake edges and loses some real edges because of the 
influence of image noise.  

In the future, we will improve the edge detection algorithm of our network. We will also finish the 

VHDL design and download our silicon neuronal network to an FPGA device and evaluate its 

functionality. The network including Class II silicon neurons will be considered. Biological 

experiments indicate that signals are fed to the cortex after the process of retina. The simple cells in 

cortex classify signals and serve as the function of orientation selection. We will use our silicon 

neuronal network performing complex recognition task based on the mechanism of simple cells. And 

consider its synaptic plasticity and learning ability as well. 
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Appendix 

Table 1 Common parameters for Class I and II neuron 

Par. Value Par. Value 

an 8.0 kp 16 

bn 0.25 pp 2−5 − 2−2 

cn 0.5 qp -0.6875 

ap 8.0 τ 0.003 

bp 0.25 α 83.3 

cp 0.5 β 333.3 

 

Table 2 Different parameters for Class I and II neuron 

Par. Value Par. Value 

kn I 2.0 φ I 1.0 

II 4.0 II 0.5 

pn I −2−2 − 2−4 r I -0.205357142 

II −2−1 − 2−4 II -0.104166 

qn I -0.705795601 I0 I -0.205 

II -1.317708517 II -0.23 
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