
Improved Binary Decision Diagram based Accelerated Circuit

Evolutionary Algorithm

Yafeng Meng, Junbin Zhang, Jinyan Cai

Department of Elec. and Opt. Engineering, Mechanical Engineering College, Shijiazhuang, China
myfrad@163.com

Keywords: EHW; EA; Accelerated Circuit Evolution; Binary Decision Diagram

Abstract. Nowadays, Evolvable Hardware (EHW) is widely used in many fields. When it is used
in circuit design, its advantages can be incarnated adequately. However, if the circuit scales are
very big, the probability of successful circuit evolution is reduced greatly. So improving
traditional Evolutionary Algorithm (EA) is very important. In this paper, an improved EA is
proposed, and it is combined with Binary Decision Diagram (BDD). Through the simulation
experiment, the feasibility and effectiveness of proposed accelerate circuit evolutionary algorithm
has been proved.

Introduction

With the development of electronic technology, a novel technique was used in electronic
circuit, which name is Evolvable Hardware (EHW). It has many advantages, including
self-adaptive, self-repair, self-organization and so on[1-4]. The electronic circuit systems can be
improved by it.

EHW’s combinatorial optimization and global search tools is EA, in order to obtain the
expectable circuit and electronic systems by simulating evolution. The expression of EHW can be
expressed as follows, =EHW PLDs EAs+ [1, 5]. Evolvable Hardware is abbreviated by EHW,
Programmable Logic Device is abbreviated by PLD, and Evolutionary Algorithm is abbreviated
by EA. Its basic theory is shown in Fig.1 [5].

Fig.1 The basic theory of EHW

PLD is the basic hardware of EHW, and EA is the key to determine whether EHW can be
implemented or not[5-7].

Many limitations are existed in EA, such as slow convergence speed, etc. So improving EA
is very important (including reducing the number of convergence iteration, raising the accuracy of
searching and accelerating the convergence speed). If the scales of evolved circuit are very big,

Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015)

© 2015. The authors - Published by Atlantis Press 794

the efficiency of evolution circuit will be affected.
In this paper, an accelerated circuit EA based on improved Binary Decision Diagram (BDD)

was proposed. The performance of proposed algorithm is validated by the simulation experiment.
The rest of paper is organized as follows. In section 2, accelerated circuit EA based on

improved BDD is expatiated. In section 3, the processes of accelerated circuit EA is analyzed. In
section 4, the simulation experiment is analyzed. Section 5 is concludes of the paper.

Accelerated circuit EA based on improved BDD

In the process of EA implementation, the evolution of the large-scale circuit will meet with
difficulties. The scale of evolved circuit will be the exponential growth following the increased
number of the input ports, and the evolution of convergence rate will be the exponential growth
following the increase of truth table scale. Therefore, the study of how to accelerate the
large-scale truth table circuit will seem especially important.

In order to resolve this problem, divide-and-conquer technique was widely used in EHW. The
improved BDD was proposed in this paper. In the process of evolution, the truth table is
separated.

When truth table was separated, all inputs could not be separated. Because a same function
can be realized by different circuit structure. However, they do not have same hardware resources
consumption, and they have different characteristics. Different structures can be used in different
environments. Furthermore, if the truth table is separated completely, only a fixed circuit structure
can be obtained. If EHW is combined with BDD, not only the circuit structrure can be enriched,
but also the speed of evolution circuit can be accelerated.

In order to facilitate the commencement of EA, and make full use of the features of EA, the
truth table was splited up only four input ports. The remaining four input ports will be evolved by
EHW, the final circuit can be obtained. Furthermore, the another reason of separating remaining
four input ports is that FPGA is used as the hardware platform of EHW, and the Look-up Table
(LUT) of current mainstream FPGA has four input ports. Although LUT can be considered as a
ROM, any four-input one-output truth table can be stored directly[8]. However, EA mainly used
to design circuit in this paper.

The basic theory of accelerated circuit EA

Any combinatorial circuit has a truth table, and it can be expressed by a boolean function.
We can assume that the boolean function is ()f x . First of all, it need to assume that the evolved
truth table has M input ports (1 2 3 Mx ,x ,x , xL) and N output ports(1 2 3 Ny , y , y , yL). ()f x is target
function which need to be evolved at the same time, 1()f x and 2 ()f x are assumed unknown
boolean function. Then the detailed steps of accelerated circuit EA can be expatiated as follows.

First of all, calculating the number of truth table input ports, it is represented by innum M= .
The number of truth table output ports also need to be calculated, it is represented by outnum N= .
Then optionally choose an input port(1x), and analyze the value of 1x .

Secondly, if there is only "0" or "1" existing in the a kind of value of 1x , in this case, the
input port 1x need to be separated. The remaining truth table is still a whole truth table, and input
ports become 1innum M= − . However, if the value of 1x is “0”, also can be “1”, in this case, the
input port 1x need to be separated. The remaining truth table becomes two sub-truth table. The
input ports of remaining truth table become 1innum M= − .

Eventually, above step should execute periodically. Until the number of rest inputs ports are

795

4innum = . Only the remaining four-input ports truth table need to be evolved rapidly at this time.
In the process of circuit evolution, it will need Genetic Algorithm Particle Swarm

Optimization (GAPSO) to evolve 1()f x and 2 ()f x [9-13]. The implementation steps of GAPSO
will be shown as follows.

Step1 Initializing the particle populations. M chromosome codes need to be generated
randomly which meet the requirements. The crossover rate, mutation rate and inertia weight of
GAPSO need to be set.

Step2 Calculating the fitness (ifitness) of each particle, and i M< . The best particle's position
(igbest) need to be selected of current generation, and compare with the global optimal particle
position (pbest). Then the optimal position should to be saved. The operations of selection,
crossover and mutation are implemented for particle population.

Step3 According to the Equation (1) updates each particle's position (1
,

t
i jx +), and according to

the Equation (2) updates each particle's speed (1
,

t
i jv +).

1 1
, , ,

t t t
i j i j i jx x v+ += + (1)

 1 1 1
, , , , , ,1 1 2 2() ()t t t t t t

i j i j i j i j i j i jv wv c r pbest x c r gbest x+ = + − + − (2)

Step4 Calculating the fitness value of each particle, and compared with the global optimum
value. Then the global optimum value should be updated.

Step5 According to the calculated fitness value to estimate whether the algorithm meets the
convergence criteria or not. If convergence criteria is met, the finally particle code can be output.
If convergence criteria is not met, Step3 need to be implemented continuously. Then the
operations of GAPSO are finished.

In the implementation of PSO, Equation (3) is used as the commonly used fuzzy function for
particle discretization[14-16].

,,
1()

1 i jxi jsig x
e−

=
+

 (3)

While the updating expression of every particle is given as expression (4).

,

0 ((,:))
(1)

1 ((,:))i j

rand sig X i
X t

rand sig X i
>⎧

+ =⎨ ≤⎩
 (4)

The simulation experiment

In order to validate the effectiveness of proposed accelerated circuit evolution strategy which
is based on improved BDD. The typical of C17 is selected as a accelerated evolve circuit. Because
of the length of the paper, its truth table is not shown in this paper.

When using improved BDD, only one input port of C17 will be chosen by EA. Its name is
assumed X1. Because the value of X1 can be “0”, and can also be “1”. The true table is divided
into two parts based on this standard. The rest input ports are still need to separate like the process
of separating the X1 input port. If the number of remaining input ports is four, the separating
process can be stopped. Because the C17 circuit only has five input ports, the separated process
need to be operated once.

In the process of GAPSO, the fitness (fitvalue) of algorithm will be expressed as Equation (5).
2

1

n

i
i

fitvalue fitnumber
=

= ∑ (5)

796

n s the number of evolved circuit input ports, it is different from the total number of input
ports (N). ifitnumber is the test value of thi input combination ({0,1}ifitnumber ∈). The fitness
function is converted to calculated the maximum of fitvalue .

In the process of GAPSO, some parameters need to be set. The specific parameters settings
are shown in Table 1.

Table 1 The parameters’ value

Operation
parameters

The number
 of particles
populations

Crossover
 rate

Mutation
 rate

The number of
crossover points

The number
of mutation points

Value 50 0.90 0.03 2 2
The max number of iterations is 16,000 times. The contrastive curve between traditional EA

and improved BDD is shown in Fig.2. They are used in the circuit evolution.

0 2000 4000 6000 8000 10000 12000 14000 160000.6

0.7

0.8

0.9

1

1.1

The number of iterations

Th
e

be
st

 fi
tn

es
s

va
lu

e

Traditional EA
Improved BDD

Fig.2 The contrastive curve between traditional EA and improved BDD in EHW

Some conclusions can be obtained from Fig.2 easily. The final fitness value of using
traditional EA is 0.9375, and the final fitness value of using improved BDD is 1. However, the
best fitness value is 1.

When the algorithms reach the max number of iterations (16,000 times), the traditional EA
cannot reach the best fitness. Its fitness value reaches 0.9375 when the number of iterations is
3982. Its fitness value is not change in the future. In other words, the circuit evolution does not
achieve success at this time.

The improved BDD can reach the best fitness when the number of iterations is 2493. It only
spends 4.625 seconds when it is run in MATLAB. The circuit evolution achieves success.

Through the contrast experiment, when the improved BDD is used in EHW, its performance
is better than the traditional EA. The improved BDD can greatly accelerate the evolutionary
algorithm convergence rate. The effectiveness of the proposed circuit evolution strategy has also
been proved in this paper.

Conclusions

In this paper, the traditional EA was improved by BDD. It is different from the existing
improvements of EA. Through the simulation, the feasibility and effectiveness of proposed
accelerate circuit evolutionary algorithm has been proved.

Acknowledgement

This work was supported by the National Natural Science Foundation of China
(NO.61372039).

797

References

[1] C.H. Pauline, M.T. Andy. Challenges of evolvable hardware: past, present and the path to a
promising future. Genet Program Evolvable Mach. (2011)183-215.

[2] Y.M. Lee, C.S. Choi, S.G. Hwang, et al. Transistor-Level Evolution of Digital Circuits Using a
Special Circuit Simulator. Lecture Notes in Computer Science. Vol.5216, No.1,
(2008)320-331.

[3] S.Z. Ricardo, S. Adrian, K. Didier, et al Evolvable Hardware System at Extreme Low
Temperatures. Lecture Notes in Computer Science. Vol.3637, No.1, (2005)1-37.

[4] D.L. Jason, S.H. Gregory, S.L. Derek. Evolutionary design of an x-band antenna for NASA's
space technology 5 mission. Proceeding of the 2003 NASA/DoD Conference on Evolvable
Hardware (EH'03), Chicago, USA. 2003, pp.1-9.

[5] J.B. Zhang, J.Y. Cai, Y.F. Meng, et al. Fault self-repair strategy based on evolvable hardware
and reparation balance technology. Chinese Journal of Aeronautics, Vol.27, No.5,
(2014)1211–1222.

[6] D. Keymeulen, R.S. Zebulum, Y. Jin, et al. Fault tolerant evolvable hardware using field
programmable transistor arrays. IEEE Transactions on Reliability. Vol.49, No.3,
(2000)305-316.

[7] Y. Moritoshi, H.K. VJung, Y. Ikou. Evolvable Reasoning Hardware: Its Prototyping and
Performance Evaluation. Genetic Programming and Evolvable Machines. Vol.2, No.3,
(2001)211-230.

[8] U. Andres, S. Eduardo. Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs.
Lecture Notes in Computer Science. Vol.3637, No.1, (2005)56-65.

[9] Y.R. Zhou, Y.X. Li, Y. Wang, et al. Multiobjective Optimization Algorithm Based on (μ+1)
Evolutionary Strategy. Computer Engineering, Vol.29, No.18, (2003)1-3.

[10] R. Poli, J. Kennedy, T. Blackwell. Particle swarm optimization. Swarm Intelligence. Vol.1,
No.1, (2007)33-57.

[11] E.J. Solteiro Pires, J.A. Tenreiro Machado, P.B. Moura Oliveira. Dynamical modeling of a
genetic algorithm. Signal Processing. Vol.86, No.10, (2006)2760-2770.

[12] Y. Jiang, T.S. Hu, C.C. Huang, et al. An improved particle swarm optimization algorithm.
Applied Mathematics and Computation. Vol.193, No.1, (2007)231-239.

[13] B. Niu, Y.L. Zhu, X.X. He, et al. MCPSO: A multi-swarm cooperative particle swarm
optimizer. Applied Mathematics and Computation. Vol.185, No.2, (2007)1050-1062.

[14] Q. Kanga，H. He. A novel discrete particle swarm optimization algorithm for meta-task
assignment in heterogeneous computing systems. Microprocessors and Microsystems. Vol.35,
No.1, (2011)10-17.

[15] E.X. Chen，J.Q. Li，X.Y. Liu. In search of the essential binary discrete particle swarm.
Applied Soft Computing Journal. Vol.11, No.3, (2011)3260-3269.

[16] Q.K. Pan，M. Fatih，Y.C. Liang. A discrete particle swarm optimization algorithm for the
no-wait flowshop scheduling problem. Computers and Operations Research. Vol.35, No.9,
(2008)2807-2839.

798

