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Abstract. Nowadays, Evolvable Hardware (EHW) is widely used in many fields. When it is used 
in circuit design, its advantages can be incarnated adequately. However, if the circuit scales are 
very big, the probability of successful circuit evolution is reduced greatly. So improving 
traditional Evolutionary Algorithm (EA) is very important. In this paper, an improved EA is 
proposed, and it is combined with Binary Decision Diagram (BDD). Through the simulation 
experiment, the feasibility and effectiveness of proposed accelerate circuit evolutionary algorithm 
has been proved.  

Introduction 

With the development of electronic technology, a novel technique was used in electronic 
circuit, which name is Evolvable Hardware (EHW). It has many advantages, including 
self-adaptive, self-repair, self-organization and so on[1-4]. The electronic circuit systems can be 
improved by it.  

EHW’s combinatorial optimization and global search tools is EA, in order to obtain the 
expectable circuit and electronic systems by simulating evolution. The expression of EHW can be 
expressed as follows, =EHW PLDs EAs+ [1, 5]. Evolvable Hardware is abbreviated by EHW, 
Programmable Logic Device is abbreviated by PLD, and Evolutionary Algorithm is abbreviated 
by EA. Its basic theory is shown in Fig.1 [5]. 

 
Fig.1 The basic theory of EHW 

PLD is the basic hardware of EHW, and EA is the key to determine whether EHW can be 
implemented or not[5-7]. 

Many limitations are existed in EA, such as slow convergence speed, etc. So improving EA 
is very important (including reducing the number of convergence iteration, raising the accuracy of 
searching and accelerating the convergence speed). If the scales of evolved circuit are very big, 
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the efficiency of evolution circuit will be affected.  
In this paper, an accelerated circuit EA based on improved Binary Decision Diagram (BDD) 

was proposed. The performance of proposed algorithm is validated by the simulation experiment. 
The rest of paper is organized as follows. In section 2, accelerated circuit EA based on 

improved BDD is expatiated. In section 3, the processes of accelerated circuit EA is analyzed. In 
section 4, the simulation experiment is analyzed. Section 5 is concludes of the paper. 

Accelerated circuit EA based on improved BDD 

In the process of EA implementation, the evolution of the large-scale circuit will meet with 
difficulties. The scale of evolved circuit will be the exponential growth following the increased 
number of the input ports, and the evolution of convergence rate will be the exponential growth 
following the increase of truth table scale. Therefore, the study of how to accelerate the 
large-scale truth table circuit will seem especially important. 

In order to resolve this problem, divide-and-conquer technique was widely used in EHW. The 
improved BDD was proposed in this paper. In the process of evolution, the truth table is 
separated. 

When truth table was separated, all inputs could not be separated. Because a same function 
can be realized by different circuit structure. However, they do not have same hardware resources 
consumption, and they have different characteristics. Different structures can be used in different 
environments. Furthermore, if the truth table is separated completely, only a fixed circuit structure 
can be obtained. If EHW is combined with BDD, not only the circuit structrure can be enriched, 
but also the speed of evolution circuit can be accelerated.  

In order to facilitate the commencement of EA, and make full use of the features of EA, the 
truth table was splited up only four input ports. The remaining four input ports will be evolved by 
EHW, the final circuit can be obtained. Furthermore, the another reason of separating remaining 
four input ports is that FPGA is used as the hardware platform of EHW, and the Look-up Table 
(LUT) of current mainstream FPGA has four input ports. Although LUT can be considered as a 
ROM, any four-input one-output truth table can be stored directly[8]. However, EA mainly used 
to design circuit in this paper. 

The basic theory of accelerated circuit EA 

Any combinatorial circuit has a truth table, and it can be expressed by a boolean function. 
We can assume that the boolean function is ( )f x . First of all, it need to assume that the evolved 
truth table has M input ports ( 1 2 3 Mx ,x ,x , xL ) and N output ports( 1 2 3 Ny , y , y , yL ). ( )f x  is target 
function which need to be evolved at the same time, 1( )f x  and 2 ( )f x  are assumed unknown 
boolean function. Then the detailed steps of accelerated circuit EA can be expatiated as follows. 

First of all, calculating the number of truth table input ports, it is represented by innum M= . 
The number of truth table output ports also need to be calculated, it is represented by outnum N= . 
Then optionally choose an input port( 1x ), and analyze the value of 1x . 

Secondly, if there is only "0" or "1" existing in the a kind of value of 1x , in this case, the 
input port 1x need to be separated. The remaining truth table is still a whole truth table, and input 
ports become 1innum M= − . However, if the value of 1x  is “0”, also can be “1”, in this case, the 
input port 1x need to be separated. The remaining truth table becomes two sub-truth table. The 
input ports of remaining truth table become 1innum M= − . 

Eventually, above step should execute periodically. Until the number of rest inputs ports are 
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4innum = . Only the remaining four-input ports truth table need to be evolved rapidly at this time.  
In the process of circuit evolution, it will need Genetic Algorithm Particle Swarm 

Optimization (GAPSO) to evolve 1( )f x  and 2 ( )f x [9-13].  The implementation steps of GAPSO 
will be shown as follows. 

Step1 Initializing the particle populations. M  chromosome codes need to be generated 
randomly which meet the requirements. The crossover rate, mutation rate and inertia weight of 
GAPSO need to be set. 

Step2 Calculating the fitness ( ifitness ) of each particle, and i M< . The best particle's position 
( igbest ) need to be selected of current generation, and compare with the  global optimal particle 
position ( pbest ). Then  the optimal position should to be saved. The operations of selection, 
crossover and mutation are implemented for particle population.  

Step3 According to the Equation (1) updates each particle's position ( 1
,

t
i jx + ), and according to 

the Equation (2) updates each particle's speed ( 1
,

t
i jv + ). 

1 1
, , ,

t t t
i j i j i jx x v+ += +                                   (1) 

 1 1 1
, , , , , ,1 1 2 2( ) ( )t t t t t t

i j i j i j i j i j i jv wv c r pbest x c r gbest x+ = + − + −                    (2) 

Step4 Calculating the fitness value of each particle, and compared with the global optimum 
value. Then the global optimum value should be updated. 

Step5 According to the calculated fitness value to estimate whether the algorithm meets the 
convergence criteria or not. If convergence criteria is met, the finally particle code can be output. 
If convergence criteria is not met, Step3 need to be implemented continuously.  Then the 
operations of GAPSO are finished. 

In the implementation of PSO, Equation (3) is used as the commonly used fuzzy function for 
particle discretization[14-16].  

,,
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                                  (3) 

While the updating expression of every particle is given as expression (4). 
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The simulation experiment 

In order to validate the effectiveness of proposed accelerated circuit evolution strategy which 
is based on improved BDD. The typical of C17 is selected as a accelerated evolve circuit. Because 
of the length of the paper, its truth table is not shown in this paper. 

When using improved BDD, only one input port of C17 will be chosen by EA. Its name is 
assumed X1. Because the value of X1 can be “0”, and can also be “1”. The true table is divided 
into two parts based on this standard. The rest input ports are still need to separate like the process 
of separating the X1 input port. If the number of remaining input ports is four, the separating 
process can be stopped. Because the C17 circuit only has five input ports, the separated process 
need to be operated once. 

In the process of GAPSO, the fitness ( fitvalue ) of algorithm will be expressed as Equation (5). 
2

1

n

i
i

fitvalue fitnumber
=

= ∑                                     (5) 
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n  s the number of evolved circuit input ports, it is different from the total number of input 
ports ( N ). ifitnumber is the test value of thi  input combination ( {0,1}ifitnumber ∈ ). The fitness 
function is converted to calculated the maximum of fitvalue . 

In the process of GAPSO, some parameters need to be set. The specific parameters settings 
are shown in Table 1. 

Table 1 The parameters’ value 

Operation  
parameters 

The number 
 of particles 
populations 

Crossover
 rate 

Mutation
 rate 

The number of
crossover points

The number  
of mutation points 

Value 50 0.90 0.03 2 2 
The max number of iterations is 16,000 times. The contrastive curve between traditional EA 

and improved BDD is shown in Fig.2. They are used in the circuit evolution. 
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Fig.2 The contrastive curve between traditional EA and improved BDD in EHW 

Some conclusions can be obtained from Fig.2 easily. The final fitness value of using 
traditional EA is 0.9375, and the final fitness value of using improved BDD is 1. However, the 
best fitness value is 1.  

When the algorithms reach the max number of iterations (16,000 times), the traditional EA 
cannot reach the best fitness. Its fitness value reaches 0.9375 when the number of iterations is 
3982. Its fitness value is not change in the future. In other words, the circuit evolution does not 
achieve success at this time. 

The improved BDD can reach the best fitness when the number of iterations is 2493. It only 
spends 4.625 seconds when it is run in MATLAB. The circuit evolution achieves success. 

Through the contrast experiment, when the improved BDD is used in EHW, its performance 
is better than the traditional EA. The improved BDD can greatly accelerate the evolutionary 
algorithm convergence rate. The effectiveness of the proposed circuit evolution strategy has also 
been proved in this paper. 

Conclusions 

In this paper, the traditional EA was improved by BDD. It is different from the existing 
improvements of EA. Through the simulation, the feasibility and effectiveness of proposed 
accelerate circuit evolutionary algorithm has been proved.  
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