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Abstract. The corresponding variation form of the Z-domain transfer function of switched 

-capacitor integrator(behavioral simulation model) under the impact of op-amp’s four nonlinearities 

are explored in detail in this paper, which are finite direct-current gain(FDCG), nonlinear 

direct-current gain(NLDCG), slew rate(SR) and gain-bandwidth product(GBW) respectively. It’s 

assumed that the integrator is free from the effect of SR and GBW when dealing with the FDCG 

and NLDCG, namely, in other words, the sampling and integrating can be finished in a very short 

time slot. Then based on the total charge conservation in sampling capacitor and integrating one, we 

find out the relationship between the input and output of the switched-capacitor integrator. After 

that, the relational expression is further translated into the Z-domain model. Especially, when 

looking into the effect of the finite SR and GBW, in order to establish the zero-input response 

during integration phase, we convert the issue into the zero-status response of the equivalent step 

input utilizing the equivalence principle between the charge and discharge of the sampling capacitor. 

In such a way, the complexity of the analyzing and calculating is effectively simplified. The 

presented mathematical analysis in this paper is the theoretical foundation of behavioral modeling 

and simulation for op-amp’s four nonlinear properties employing MATLAB/SIMULINK software 

tools. 

1. Introduction 

As a significant alternative of electronic system’s front-end data collecting and converting, 

discrete timeΔΣ modulator (Fig.1) are widely applied in such fields as wireless communication, 

computer, consumer electronics, and so on [1,2]. In earlier stage of theΔΣ modulator design, 

system topology, primary specification (such as signal-to-noise-and-distortion-ratio (SNDR), 

effective number of bits (ENOB), spectral characteristic (such as power spectral distribution (PSD)) 

need to be predicted and evaluated. They are subject to several non-idealities existing in the system 

to varying degrees including clock jitter(CJ), excess loop delay(ELD), operational non-idealities, 

KT/C noise, and so forth. To improve the reliability and feasibility of the prediction, it is necessary 

to implement precise behavioral modeling, simulation for the whole circuit system. Up to now, 

research about behavioral modeling and simulation is quite common aimed at switched-capacitor 

(SC) ΔΣ  modulator shown in Fig.2 [3,4], however the mathematical model was usually 

employed directly, without enough elaborate exploring for the fundamental problem appeared in the 

literatures. That’s why we conduct a research on it. With the addition of op-amp’s nonlinearities 

one after another in the following derivation, the complexity and accuracy of the derived Z-domain 

model of SC integrator increase progressively. 
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2. FDCG 

During integration of the SC integrator in Fig.2, neither the charge on the sampling capacitor Sc  

move to the integrating capacitor Ic  completely due to the op-amp’s FDCG, nor the initial charge 

of 
Ic  is reserved entirely, actually, it offer a portion to

Sc . It is assumed that during integrating, the 

voltage increment of Ic  caused by charge transfer form Sc  to Ic  is 1ov . Due to a small fraction 

of charge transfer from Ic  to Sc , the initial voltage of Ic  decrease and the new value become 2ov , 

therefore the output voltage is composed of two parts at the end of the nth sampling period, denoted 

by 

 

     1 2o o ov n v n v n                                                                          (1) 

 

In the course of integrating, the initial charge of Sc  is redistributed between Sc and Ic , and the 

charge conservation equation is as follow 
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There is s S Ik c c  in the above formula. During charge integration period, the initial charge of 

Sc  is rearranged. Its charge conservation equation is 

 

2(n 1) ( ) (n)I o I o Sc v c v n c v                                                                      (4) 
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Within (4), 2 0(n) (n)ov v A   , Substituting (3) (5) into (1), we get 
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Set 0[1 1 ]s sg k k A  （ ） and  01 sk A   , Then the transfer function of non-ideal SC 

integrator become [5,6,7] 
1 1H(z) 1g z z  （ ） (8) 

Wherein g is known as integration gain, α decaying coefficient of integration output, they are 

both generated by charge leakage during integration resulted from the op-amp FDCG. Actually g 

isn’t the transient (real time) gain. In the first half period when input signal voltage takes effect, the 

output voltage is immune to it, hence in practice, g is a delayed gain, approximately the ratio of 

output voltage at the end time of the clock period to input voltage at the initial moment (in general, 

due to the relatively high sampling frequency, the input voltage within one clock period is regarded 

as invariableness). As the ratio between the attenuation value of the initial voltage of output 

terminal after one clock period and itself, α is brought about by the integrator charge leakage. 

3. Nonlinear DCG 

The op-amp DCG is usually considered as constant in most of SC integrator model. Actually, 

864



owing to nonlinear variation of the drain resistance of MOS transistor at output terminal depending 

on output voltage ov , the op-amp DCG vary nonlinearly according to ov , as shown below [5,6] 
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It is found that in (2) and (4), 0,nonA  is the DC gain at the moment of n*Ts, thus 
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Substituting (9) into the expression of g, α, we obtain 
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In an optimal situation of infinite op-amp gain, it holds that 
 

(n) (n 1) (n 1)o o s inv v k v                                                              (13) 

 

Bringing it into (11) (12), result in 
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4. Op-amp Finite GBW and SR 

The influence of GBW and SR on its value is excluded from the aforementioned integrator gain 

calculation. Due to the finite values of both, the output voltage can’t arrive at the set value merely 

ensured by charge conservation, but is dominated by an exponential dependence. So its output value 

is probably less than the value without taking GBW and SR into account. Accordingly it’s possible 

that the real value of the integration gain g and g1 at the end point of the nth period is smaller than 

the above calculated value. Since the gain of the op-amp is quite large, there are only a little 

decrease relative to the initial output voltage  1ov n  throughout integration, leading to such a 

fact that even if it is limited by finite GBW and SR, the initial output voltage can still reduce to the 

quantity specified by the op-amp FDCG and nonlinearity within a half period integration time. So 

the output decaying coefficients α and α1 are unaffected. To confirm the impact of the op-amp’s 

limited GBW and SR on the integration gain, we need to know the transient response of integrator 

output voltage all through integration. 

In the following, the calculation of the transient response of integrator output voltage in 

integration phase is presented (exponentially establishing process). 
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4.1 Op-amp gain with intermediate frequency. Let the op-amp has DC gain A0 and single pole ωp, 

then the voltage transfer function can be denoted as  0 1v pA A s   . Under intermediate 

frequency condition p   ta , this formula can be simplified as 2v taA s GBW s   , 

wherein the unit gain angular frequency is 
ta 2 GBW 0p A [8]. 

4.2 The composition of the transient response. During the integration phase [(n 1/ 2) ,n ]S ST T , 

the transient response voltage at the integrator output point is composed of the initial value  

1 [(n 1)T ]o Sv  at (n 1)TS moment and a zero-input response , (t)o ziv (assuming that the variation of  

the initial voltage at the output end can be finished instantaneously, the meaning of α1 will be given 

in the following), namely 

 

     1 ,1o o s o ziv t v n T v t     ，  1 2 s st n T nT   ，                             (16) 

 

4.3 The transfer-function within integration phase. Based on the fact that the voltage on Sc  

induced by input voltage is equal to the one came from output voltage, we have the following 

relationship 
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Let the integrator input voltage be    v
L

i it V s  during its integration phase, then the voltage 

of the op-amp’s negative input node acts as 

 

         
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The op-amp output voltage meet 
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Thus the transfer function of the integrator during integration phase becomes 
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4.4 Zero input response  ,o ziv t . During integration phase, sampling capacitor with zero input 

discharge, while charging the integrating capacitor Ic . If the initial charge of Sc  is set to 0, and put 

an appropriate step voltage ,s eqV  between Sc  and ground (whose value will be determined next 

step), it seems that the voltage span over the two ends of Sc  (because there exists an equivalence 

between the two voltage drops, one from the integrator output to the op-amp negative input, the 

other from the same point to ground). 

Such a way amounts to charge the zero initial status capacitor Sc . As long as the steady states are 

equal in value of the integrator output voltage under the two conditions of zero state charging and 

zero input discharging of Sc  respectively, the charging and discharging process of Ic  are exactly 
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the same, thus in both cases, the transient variation process of output voltage are also identical. In 

view of the above consideration, we solve for the zero input response , (t)o ziv  of the integrator 

output point indirectly though seeking zero status response , (t)o zsv  to step voltage ,s eqV . 

As known the integrator input voltage in integration phase is 
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Within above equation, 1 ( ) 1 (2 )ta GBW    . 

4.5 Equivalent step input amplitude ,Vs eq . In integration phase, due to the similar response when 

discharging Sc  as that when charging it based on the assumption of utilizing the step voltage ,s eqV , 

the same stable status values come into being. According to (3) (17) (20), it can be known that 
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Between them g is the leakage factor of the integrator output voltage resulted from the initial 

charge on sampling capacitor Sc . 

4.6 Transient response  ov t . According to (16) (22) (23), we get [9] 
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In which  1 2 s st n T nT   ， , on account of the maximum slope of (t)ov  at the initial time of 

integration phase, we have 

 

max
( 1)o indv dt gv n    (25) 

 

Provided that
maxodv dt SR , the output response of the integrator is dominated by (24), while 

under
maxodv dt SR  circumstance, the output vary along with the next piecewise function [9] 
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In above expression    0 ln ( 1) 1 2in st SR gv n n T     , Let 
st nT  in (23) (25), the 

following is obtained respectively 
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Wherein  1 ln ( 1)int SR gv n   . Taking nonlinear DCG into account, we just need to substitute 

g1, α1 of (14) (15) for g, α in last two equations. In comparison with (8), a factor 21 Tse   less than 

1 is added to the integration gain in (27), however, besides that, the numerator in (28) has an 

additional constant, so we can’t find out the system transfer function straightforward, making the 

SIMULINK modeling more complicated and needing MATLAB/SIMULINK programming 

language to tackle this problem further. 
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