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Abstract. In order to analyze the startup transient response of a flywheel system, its shaft system is 

studied in this paper: The transient oil forces of a squeeze film damper (SFD) in fixed frame are firstly 

derived. By putting the Wilson-θ formulation integration method which having damp of algorithm 

into the motion equations of a rigid disc’s barycenter, the transient transfer matrix of a station made of 

a disc and a shaft is also built which can improve algorithm stability. The transient-state response 

equations of the flywheel shaft system are built and solved by putting Taylor series and numerical 

iteration into the transfer matrix method, and the startup transient-state response curves of rotor with 

different constant angular acceleration are finally obtained. The calculation results show that the 

theoretical method introduced in this paper can be used to analyze the performance of quick charge of 

a flywheel shaft system. 

Introduction 

Comparing with other storing units, the energy storage flywheel (ESF) is very attractive in recent 

years on account of its high efficiency, short recharge time, universal localization, 

environment-friendly, high power density [1-3]. The existing literatures on the analysis of it were 

concentrated on application, control, mechanism innovation and steady unbalance responses [4-7], 

however, research on transient dynamics analysis was rarely involved. In this paper, the hybrid 

bearings consisting of a permanent magnetic bearing (PMB) and two angular contact ceramic ball 

bearings (ACBB) were used as the support for the flywheel system, and we carried on the theoretical 

analysis and study aiming at the performance of quick charge, namely startup transient dynamic 

analysis. 

The transient response of rotor-bearing system can be classified as seeking initial value problem in 

mathematics. In order to facilitate the analysis, the dynamic equations are often built in stationary 

reference frame and there are several methods often utilized such as, using third party software (for 

instance ANSYS)[8], introducing numerical integration method into the Lagrange equation [9]，and 

introducing numerical integration into the finite element method [10]. The three methods all have 

some disadvantages, the calculation accuracy solved by ANSYS software is low, the Lagrange 

equation method is too complicated and the finite element method has low computational efficiency. 

The Prohl transfer matrix method (TMT) has advantages of simple programming, quick computing 

speed, so the transient-state response equation of the flywheel system is built and solved by means of 

putting the Wilson-θ formulation integration method into the Prohl transfer matrix method: firstly, the 

oil film force of the squeeze film damper (SFD) and 9×9 order transient transfer matrix of a station 

made of a disc and a shaft are built in stationary reference frame. Secondly, the transient-state 

equation of the flywheel system crossing the critical speed with constant acceleration is formed by 

Phrol TMT. Thirdly, the transient-state equation of the ESF is solved by the transient TMT, Taylor 

series and numerical iteration. Finally, the theoretical analysis of the performance of quick charge is 

studied. 
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The Transient-state Dynamic Equation of the Flywheel System 

Oil Film Forces in Stationary Reference Frame. In present literatures, the equations of SFD’s 

transient oil film forces are all built in rotating frame. In order to build the transient-state equation of 

the flywheel system, oil film forces of SFD in stationary reference frame should be firstly derived. 

According to relationship of oil film forces in stationary and rotating frame, we can obtain 

iψ

x y r t
i ( i )F F F F F e                                                                                                                       (1) 

Where the mathematical expressions of Ft、Fr can be referred in Reference [9]. 
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Figure 1. The coordinate transformation of oil film forces 

Due to the relationship between stationary and rotating frame, we can also obtain 

iψix y ee  ， cosx e  ， siny e                                                                                                   (2) 
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Putting Eq.2 and Eq.3 into Eq.1 yields the equations of transient oil film forces in stationary 

reference frame. 

x y
( , , , ), ( , , , )F f x y x y F f x y x y                                                                                                       (4) 

The Transient Dynamic Equation of a Rigid Disc. The transient response of a rotor-bearing system 

is no longer simple harmonic motion and the solution of the transient equation cannot be expressed as 

{x}={A}e
λt

, so the transfer matrix introduced by the References [11,12] is no longer suitable. 

Therefore, the transient transfer matrix of a station made of a disc and a shaft is firstly built in 

stationary reference frame considering the effects of oil film forces of the SFD in this paper. 
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Figure 2. The coordinator frames of a rigid disc 

The geometric relationship between barycenter and section center of a rigid disc is shown in Fig.2.  

We can see inertial frame oxyz with origin in the rest position of the supported bearings and rotating 

frame o
’
ξη with origin in o’. c and o’ respectively represent the barycenter and section center of the 

disc [11]. From Fig.2 we can obtain 
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                                                                                                                   (5) 

The speed and acceleration equations of the rigid disc can be obtained by the first derivative and 

second derivative  
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Figure 3. The schematic view of a rigid disc in oxz and oyz planes 

Fig.3 shows a schematic view of the rigid disc in oxz and oyz planes. The motion equations built by 

D’Alembert’s principle are as follows [10]                     
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                                                                                                            (8) 

Wilson-θ Formulation Integration Method. In order to avoid the algorithm losing its stability as the 

responses having high frequency components, Wilson-θ implicit formulation integration method 

which having damp of algorithm is used. It assumes the acceleration varies linearly at the time interval 

from t to t+θΔt, and the generalized velocity and acceleration at time t+θΔt can be described as 
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The generalized velocity and acceleration at time t+Δt are as follows 
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When θ>1.3, the algorithm is unconditional stability. In this paper, we take the θ value is 1.4. 

The Transient Transfer Matrix of a Station Made of a Disc and a Shaft. Putting Eq.4, Eq.6 and 

Eq.9 into Eq.8 and introducing state vector Z yields 

 R L

t+θΔt t+θΔt
Z D Z                                                                                                                               (11) 

Where, Z= T

x x x y y y[ 1]x M Q y M Q  , [D] is the transient transfer matrix of a rigid disc. 

The transient transfer matrix of a massless elastic shaft with equal section is identical to the steady 

transfer matrix [9]. Suppose the transfer matrix of it is [B], the transient transfer matrix of a station 

made of a rigid disc and an elastic shaft can be described as follows 
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Solution of the Transient Dynamic Equation . Because oil film forces are the complex nonlinear 

function of displacement and velocity of the SFD’s journal determined by the transient responses, it is 

hard to solve dynamic equation when they are unknown. According to this situation, the transient 

dynamic equation is solved by introducing Taylor series and numerical iteration into the transient 

TMT. 

1. Set the scope of time T and step length Δt.  

2. Determine starting values of the displacement, velocity and acceleration of each element node at 

time t or t0. 

3. Using Taylor series to estimate the displacement and velocity of the element node supported by 

SFD:{e}t+θΔt={e}t + θΔt{e
。

}t、{e
。

}t+θΔt ={e
。

}t + θΔt{e
。。

}t，then putting them into Eq.4 solves the oil 

film forces at time t+θΔt. 

4. Use the TMT to solve the displacement at time t+θΔt, and use Eq.9 to solve the velocity at time 

t+θΔt. 

5. Compare the values at the same node and time solved by setp-3 and step-4, If the two values are in 

close agreement, the values solved by TMT are accepted. If the results do not agree to a specified 

accuracy, we choose the mathematical mean value of them as new starting values and repeat the 

steps from 3 to 4 again, until we get the required accuracy. 

6. Use Wilson-θ method to solve the displacement, velocity and acceleration of each element node at 

time t+Δt, and then use them as the starting values of the next step, until the transient responses 

are all obtained. 

Numerical Results and Discussion 

The Flywheel System. The physical structure of the ESF is shown in Fig.4 [15]. Two ACBBs are 

respectively used as the lower and upper support. A PMB above the rotor top surface is also used as 

the upper support, which provides axial unloading for the lower ACBB, being capable of low 
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frictional resistance and long life for the lower ACBB. A pendulum SFD is employed in the flywheel 

system to suppress the lateral vibration. The rotor constructed of solid steel with a mass of 110kg is 

used, its designed maximum tangential velocity is 330m/s and its operating speed range is 

8000-23,000 rpm. Analyze the fast charge performance of it to determine whether it is safe when it 

crosses the critical speed to arrive the operating speed with a constant acceleration of 20π rad/s2 , 

namely the rotor arrives 23000rpm in 10 seconds. 
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Motor/Generator
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Displacement 

probe

 
Figure 4. The structure of the flywheel system 

Dynamic Model. In the dynamic model of the flywheel system, the following simplifications are 

made: 

1) The stiffness of the lower ACBB in the SFD is much higher than that of the squirrel cage support 

and the oil film. Therefore, ACBB is fixed to the lower end of the shaft. 

2) Comparing with the lateral vibrations, the axial vibrations of the nodes on the central axis are 

very small and neglected. 

3) The stiffness of the upper ACBB with little changes in the operating speed range is considered as 

constant value. 

Table 1. the parameters and values of the flywheel system [15] 

 Diameter 

(shaft)[m] 

Length 

(shaft)[m] 

Diameter 

(disc)[m] 

Thickness 

(disc) [m] 

1 0.02 0.01 0 0 

2 0.018 0.01 0 0 

3 0.019 0.042 0 0 

4 0.1 0.05 0.3 0.05 

5 0.1 0.05 0.3 0.05 

6 0.1 0.05 0.3 0.05 

7 0.1 0.05 0.3 0.05 

8 0.017 0.0115 0 0 

9 0.02 0.034 0 0 

10 0.02 0.034 0 0 

11 0.02 0.034 0 0 

12 0.019 0.016 0 0 

13 0.017 0.022 0 0 

14 0.017 0.022 0 0 

15 0.02 0.01 0 0 

According to the physical structure of the flywheel system, the rotor-bearing system was divided 

into several sections and each section is modeled as a massless elastic shaft with lumped masses at the 

end. Fig.5 shows the dynamic model and Table 1 shows the parameters and values of the flywheel 

system. 
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Figure 5. The dynamic model of the flywheel system 

The calculation results and discussion. The transient response equation of the flywheel system is 

solved, and the amplitude-frequency response curves of the rotor top are drawn in Fig.6. 

As shown in Fig.6, the first critical speed values increase and the corresponding peak amplitudes 

reduce with increasing angular acceleration. Compared with the steady-state unbalance response 

value, the first critical speed values increase by 0.25%, 0.95%, 2.40%, 4.31% and 7.01%, while the 

corresponding amplitudes of the rotor top decrease by 42.59%, 51.67%, 63.52%, 71.48%  and 78.33% 

when the angular acceleration values are respectively π, 2π, 5π 
2
, 10π and 20π rad·s

-2
. The peak 

amplitude of rotor is gradually reduced with increasing angular acceleration, so rotor crossing the 

critical speed with a large angular acceleration is often used in practical engineering to improve 

stability of the rotor-bearing system.  
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Figure 6. The transient response curves of the rotor top 

The oscillations which are actually the result of a spiral motion of the system taking place about the 

self-centered position become stronger with increasing acceleration. The self-centered conditions are 

reached after some oscillations are damped out [16]. 

The calculation results prove the flywheel system is safe when it accelerates from standstill to the 

operating speed with a big constant acceleration, In another word, the rotor-bearing system 

accelerates from standstill to the operating speed (23000rpm) in 8.8 seconds with acceleration value 

of 20π rad·s
-2

, which meets the design requirement of fast charge. 

Conclusions 

1) According to relationship of oil film forces of SFD in stationary and rotating frame, the 

calculation equations of oil film forces in stationary frame are derived. 

2) Considering the effect of SDF as external forces, the dynamic equation of a rigid disc is built by 

D’Alembert’s principle. The 9×9 order transient transfer matrix [T] of a station made of a rigid 

disc and a massless elastic shaft is also built by Wilson-θ formulation integration method, which 

can improve the computational stability. 

3) The calculation results show that the theoretical method introduced in this paper can be used to 

analyze the performance of quick charge of a flywheel shaft system. 
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