

Improved Generalized Disjunction Decomposition for Circuit

Evolutionary Design

Yong Lin
 1 *

1 School of Medical Instrument and Food Engineering, University of Shanghai for Science and

Technology, Shanghai 200090, China

Keywords: Evolvable Hardware; Evolutionary Design; Scalability; Short Link Priority; Generalized

Disjunction Decomposition

Abstract. Evolvable Hardware can be used to design circuits automatically. The main difficulty of applying

real-world applications is its scalability. This paper focuses on improving the scalability of combinational logic

circuit evolutionary design. We proposed a complex circuit design method combined Generalized Disjunction

Decomposition (GDD) with Short Link Priority mutation evolutionary strategy. The proposed method can

evolve complex circuit and use fewer logic gate compared with GDD. The experimental results validated the

performance of our method.

Introduction

Evolvable Hardware (EHW) [1] is a novel technique introduced to design circuits, which can evolve

circuits only supplying the demand function and without human intervention. It designs the configuration of the

programmable hardware under the control of evolution algorithm. Using EHW, researchers have designed

many circuits such as filters [2], multiplier [3], finite state machine[4] and so on. EHW can even explore some

designs unexpected by human being [5,6].

However, there are few real-world applications developed by EHW. This is mainly due to its limitation of

scalability[7-9]. The evolution design of logic circuits is based on the true table. When the inputs increases, the

number of input-output combinations increases drastically. In addition, larger logic cell array is needed to

evolve the circuits, which lead to the increasing of chromosome length and search space. So to improve the

scalability problem, some researchers focused on decrease input-output combination. They have proposed

many methods such as function level evolution [10], divide-and-conquer [11], incremental evolution [11,12].

Divide-and-conquer and incremental evolution methods decompose a complex system into many simpler

sub-systems, evolve these sub-systems and then assemble them. While some researchers focused on

decreasing the computation complexity, they proposed the variable length chromosome [13] and dynamic

mutation rate [14], and so on. In fact, if we decrease the computation complexity of the circuit evolution, and

combine with the divide and conquer method, it will be effective to improve the scalability problem.

Our research in this paper focuses on combinations of these two methods. The SLP (Short Link Priority)

mutation Evolutionary Strategy (ES) we proposed in [15] was introduced in Generalized Disjunction

Decomposition (GDD) to accelerate the evolutionary design. The Circuits we design are FPGA (Field

Programmable gate Array)-based circuits and the design method are based on CGP (Cartesian Genetic

Programming) [3, 14]. During the evolution of the cell array using CGP, SLP-Mutation ES is able to decrease

the search space and accelerate the generation of full functional circuit, but it can’t evolve more complex

circuits. Here, a design method combine with GDD (Generalized Disjunction Decomposition) [8] and

SLP-Mutation ES are proposed, which aimed to design complex circuit and improve the scalability problem.

Generalized Disjunction Decomposition combined with SLP-Mutation Evolutionary Strategy

As mentioned above, SLP-Mutation ES can’t evolve more complex circuits. Here, a design method

combine with GDD and SLP-Mutation ES are proposed, which aimed to design complex circuit and improve

the scalability problem.

International Conference on Advances in Energy and Environmental Science (ICAEES 2015)

© 2015. The authors - Published by Atlantis Press 357

GDD in Circuit Design. GDD proposed in [8] is a novel method to evolutionary design complex circuits,

which has successfully design several combinational circuits that never previously evolved[12]. GDD

combines a pretreatment of new input-output conversion with BIE (Bi-direction Incremental Evolution)

design method. It is based on the statement that:

(1) The number of generations required to successfully evolve logic circuit is mainly dependant on the

number of inputs instead of number of outputs [8].

(2) The decomposition of a complex system into small ones in BIE is done by using output decomposition

and Shannon decomposition [12].

The input-output conversion is aimed to reduce input number and increase output number. The conversion

detail is described in [8]. The design flow of GDD and BIE is shown in figure 1. The principle of BIE design

method is to divide a complex circuit into simple sub-circuits using output decomposition and Shannon

decomposition. Then evolve each of these sub-circuits and merge incrementally these sub-circuits,

reassembling a new evolved complex circuit. During the reassembling procedure, each sub-circuit is

optimized to reduce the gate it uses. Output decomposition applies to the situation where a part of the outputs

can be fully evolved. If Output decomposition does not work well, Shannon decomposition is applied.

Shannon decomposition reduces one input number and divides the evolved circuit into two sub-circuits.

When emerging these two sub-circuits, a multiplexer is needed and the reduced one bit became the selection

signal of the multiplexer.

Complex Circuit

Output

Decomposition
Shannon

Decomposition

S1 SnS3S2 ……

Sub-circuits

Optimization

reassembling

（a） BIE Design Method

Complex Circuit

Input-output Conversion

Output

Decomposition

Shannon

Decomposition

S1 SnS3S2 ……

Sub-circuits

Optimization

reassembling

（b） GDD Design method

Fig1. Design flow of GDD and BIE [8]

GDD method divides a complex circuit into many sub-circuits, evolves them and then merges them into the

required circuit. Every sub-circuit’s logic is very simple, which needs not many gates to realize it. But there are

a lot of the sub-circuits, so the total gate number is very large. Furthermore, it required many multiplexers

during the merging procedure. The cost of gate number for multiplexers is also very large. For the input-output

conversion before BIE, it converses an n-input m-output circuit into a (n-i)-input (im 2)-output circuit. The

number of logic gate for the conversion generic multiplexer [8] is calculated as

)12(4_  i

mutiplexerCoversion mN
 (1)

For the Shannon decomposition, it needs a multiplexer to merge the two divided sub-circuits. The logic

gate number of merging two (n-1)-input m-output sub-circuits into one n-input m-output circuit is calculated

as

13_  mN mutiplexerShannon (2)

GDD combined with SLP-Mutation ES. Though GDD method can design complex circuit and improve

the scalability problem of circuit evolutionary design, it also exist some deficiencies. In order to facilitate the

358

description, “stalling effect” mentioned in [8] is explained here. It means that the fitness has not improved for

a lot of continuous generation. The deficiencies are as follows.

(1) Using of decomposition only depends on the emergence of “stalling effect” [8] defined the emergence

of “stalling effect” as fitness not having improved for 2000 generations in the experiments). The result is that

the size of divided sub-circuit becomes too small, the number of sub-circuit becomes too much, and the

number of logic gate for realizing these sub-circuits becomes too large, though we have optimized the cost of

gate number during the reassembling procedure.

(2) Because there are too many sub-circuits, the number of corresponding multiplexer is also very large,

which also increases the cost of logic gate.

(3) The small size of sub-circuit is not conducive to the creativity of the evolution design.

Therefore a design method to improve the GDD method is proposed in this paper. We set a threshold too

control the size of sub-circuit being decomposition and introduce the SLP-Mutation ES into the evolving of

the sub-circuits. When the decomposition circuit size reaches the threshold, the evolution of sub-circuit does

not stop with the emergence of the “stalling effect”, but is allowed to evolve continuously in a maximum

generation. If the circuit is not fully evolved in maximum generation, we make the sub-circuit output

decomposition. Because SLP-Mutation ES can accelerate the fully evolution of relatively complex circuit, it is

conducive to evolve the required sub-circuit successfully. Limitation the size of sub-circuit being

decomposition can reduce the number of sub-circuit and multiplexer, so the cost of logic gate will

correspondingly reduce. In addition, limitation the size of sub-circuit benefits the creativity of the evolution

design.

Experimental results and analyses

In this section some multipliers and combinational circuits from MCNC benchmark [16], which is often

used as the test bench for circuit evolutionary design, are evolved by using the proposed design method. Each

circuit is evolved by three methods. They all simulate the GDD method mention in [8].The difference between

these method and GDD includes the chromosome presentation, the fitness values calculation method and

some parameters of ES. Chromosome presentation method is the same as the method in [3]. The parameters

of (1+λ)ES are set as: λ=4, population size is 50, Number of runs per each experiment is 10 and mutation rate

is 0.06. Fitness calculation encourages the fully evolved output and then makes output decomposition. If there

is less output fully evolved, we make Shannon decomposition. Three methods are described as follows.

(1) nl_STD_GDD: Doing decomposition only depends on the emergence of “stalling effect”.

(2) l_STD_GDD: This method sets a threshold to limit the size of evolved sub-circuit and uses standard

evolution strategy.

(3) l_SLP_GDD: This method sets a threshold to limit the size of evolved sub-circuit, but it uses

SLP-Mutation ES.

The experimental results are shown in table 1, where NSc is the number of sub-circuits, NMp is the

number of multiplexer, and TG is total number of generation. During the dividing procedure, Maximum

number of generation to evolve the sub-circuits is set 1,000,000, the size of cell array is 12*6, the threshold

to limit the size of evolved sub-circuit is 5-input 3-output, and the sub-circuits no more complex than the

threshold are evolved in 50,000 generation. After the sub-circuit is successfully evolved, the optimization

mentioned in [12] is adopted to reduce the cost of logic gate, and the data in the bracket of “gate using”

column in table 1 is the number of gate using after the optimization.

In table 1, l_SLP_GDD and l_STD_GDD method both use more generation to evolve the circuit than

nl_STD_GDD method, but they cost much fewer gates because they limit the size of sub-circuit and need

fewer sub-circuits and multiplexers. Compared with the l_STD_GDD, l_SLP_GDD evolves the circuits using

less generation, and the numbers of using gate of these two methods are very close. So the proposed method

in this paper, l_SLP_GDD, is conducive to evolve the circuit using less gate efficiently. In addition, the

359

sub-circuit generated by l_SLP_GDD is relatively complex, it will conducive to the creativity of evolutionary

design. Figure 2 is the comparison of evolving 3-3 multiplier procedure between nl-STD-GDD and

l_SLP_GDD.

Tab.1 Comparison of evolution design methods: nl_STD_GDD, l_STD_GDD and l_SLP_GDD
Circuits Infomation Evolution Result Information

Circuit in out p Method NSc NMp Gate Using TG

3-3mul 6 6 64

nl_STD_GDD 4 2 129(118) 9523

l_STD_GDD 3 1 80(76) 29421

l_SLP_GDD 3 1 84(78) 21647

4-4mul 8 8 256

nl_STD_GDD 29 13 827 (730) 83872

l_STD_GDD 27 7 685(633) 676496

l_SLP_GDD 25 5 671(625) 584522

5-5mul 10 10 1024

nl_STD_GDD 125 62 3569(3026) 475766

l_STD_GDD 120 42 3147(2733) 4154682

l_SLP_GDD 113 31 3040(2690) 3753358

6-6mul 12 12 4096

nl_STD_GDD 738 332 22267 (19367) 2351678

l_STD_GDD 691 161 20421(17247) 18347726

l_SLP_GDD 665 132 19378(16944) 16734599

9sym 9 1 512

nl_STD_GDD 10 6 315 (267) 41025

l_STD_GDD 8 3 171 (161) 94844

l_SLP_GDD 7 2 185(170) 85221

rd84 8 4 256

nl_STD_GDD 17 8 561 (497) 62096

l_STD_GDD 16 5 433 (390) 327340

l_SLP_GDD 15 3 416(381) 284139

misex1 8 7 256

nl_STD_GDD 9 4 231(201) 8628

l_STD_GDD 8 4 215(191) 8571

l_SLP_GDD 8 4 227(198) 8405

5xp1 7 10 128

nl_STD_GDD 20 10 644(573) 50528

l_STD_GDD 18 6 448(391) 424125

l_SLP_GDD 18 4 429(388) 365273

S1(5,12,32)

S3(5,5,32)S2(5,7,32)

S5(4,5,16) S4(4,5,16)

S7(4,1,16)S6(4,4,16)

S1(5,12,32)

S3(5,5,32)S2(5,7,32)

S4(5,2,32)S3(5,3,32)

Output Decomposition

Shannon Decomposition

Output Decomposition

Output Decomposition

Output Decomposition

Evolution procedure of 3-3 multiplier using

nl_STD_GDD
Evolution procedure of 3-3 multiplier using

l_SLP_GDD

Fig.2 Comparison of evolving 3-3 multiplier procedure between nl_STD_GDD and l_SLP_GDD

Summary

In this paper, After analyzing the GDD method and its deficiencies, we proposed a complex circuit design

method based on GDD to improve the scalability of circuit evolution design. Setting a threshold and

360

introducing the SLP-Mutation ES in the GDD make the reduction of using logic gate, though it cost more

generation. The proposed method is also conducive to the creativity of evolutionary design.

References

[1] X. Yao and T. Higuchi, "Promises and Challenges of Evolvable Hardware," IEEE Transactions on

Systems, Man, and Cybernetics, Part C, 29(1998)87-97.

[2] J. R. Koza, F. H. B. III, D. Andre, and M. A. Keane, "Four Problems for Which a Computer Program

Evolved by Genetic Programming is Competitive with Human Performance," in the 1996 IEEE Int. Conf.

on Evolutionary Computation (ICEC'96), Piscataway, NJ, USA, 1996.

[3] J. F. Miller, D. Job, and V. K. Vassile, "Principles in the Evolutionary Design of Digital Circuits- Part I,"

Genetic Programming and Evolvable Machines, vol. 1(1), pp. 8-35, 1999.

[4] T. Higuchi, H. Iba, and B. Manderick, "Evolvable Hardware," Massively Parallel Artificial Intelligence,

pp. 398-421, 1994.

[5] T. Higuchi, "Evolvable Hardware and it's Application to Pattern Recognition and Fault-Tolerant

Systems," in Toward Evlovable hardware: The evolutionary Engineering approach, 1996, pp. 118-135.

[6] T. Higuchi, T. Niwa, and T. Tanaka, "Evolvable Hardware with Genetic Learning," in Simulation of

Adaptive Behacior, 1993, pp. 417-424.

 [7] T. G. W. Gordon and P. J. Peter, "Development Brings Scalability to Hardware Evolution," in

Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, Washington DC,USA,

2005, pp. 272-279.

[8] E. Stomeo, T. Kalganova, and C. Lambert, "Generalized Disjunction Decomposition for Evolvable

Hardware," IEEE Transactions on Systems, Man and Cybernetics, Part B pp. 1024-1043, 2006.

[9] V. K. Vassilev and J. F. Miller, "Scalability Problems of Digital Circuit Evolution Evolvability and

Efficient Designs," in The Second NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA,

USA, 2000, pp. 55-64.

[10] T. Higuchi, "Evlovable Hardware at Function Level," in 1997 IEEE Int.Conf.Evolutionary

Computat.(ICEC'97), 1997, pp. 187-192.

[11] J. Torresen, "A Divide-and-Conquer Approach to Evolvable Hardware," in the Second International

Conference on Evolvable Systems: From Biology to Hardware (ICES98), 1998, pp. 57-65.

[12] T. Kalganova, "Bidirectional Incremental Evolution in Evolvable Hardware," in the Second NASA/DoD

Workshop on Evolvable Hardware, Palo Alto, California, USA, 2000, pp. 65-74.

 [13] M. Iwata, I. Kajitani, H. Yamada, and T. Higuchi, "A Pattern Recognition System Using Evolvable

Hardware," in Parallel Problem Solving from Nature Ⅳ, Berlin,Germany, 1996, pp. 761-770.

[14] E. Stomeo, T. Kalganova, and C. Lambert, "A Novel Genetic Algorithm for Evolvable Hardware " in the

2006 IEEE Congress on Evolutionary Computation, Canada, 2006, pp. 441--448.

[15] Y. Lin, " A Novel Mutation Strategy to Accelerate Evolutionary Design of Circuits " in the ICNIS 2008,

China, 2008, pp. 358-362.

 [16] S. Yang, "Logic Synthesis and Optimization. Benchmarks, Version 3.0," Microelectronics Center of

North Carolina 1991.

361

