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Abstract. The unique characteristics of the supercavitating vehicles is different from the traditional 

underwater vehicles. For the supercavitating vehicles with nonlinear time-delay dynamics model which 

containing unmatched uncertainties, the backstepping attitude tracking controller is designed based on 

backstepping control, adaptive control and sliding mode control. The uncertain factors were estimated by 

using the adaptive algorithm, and the robustness of the system with uncertainties and external disturbance was 

improved by using variable structure control. The simulation results show that the system responds rapidly and 

it has good stability, which shows that the designed controller can be applied to the stability control of 

underwater high-speed vehicles. 

Introduction 

The viscous resistance of water is an important factor to limit the speed of underwater vehicle. Supercavitation 

drag reduction technology capable of forming a parcel sail body cavity which could reduce resistance 

significantly, and at the same time the underwater vehicle can also has ultra-high speed[1]. Nevertheless, the 

fluid dynamics of the super-cavitating vehicle is still different from the conventional one. Due to cavitation 

generation, the pressure center of the vehicle moves forward, and the added mass and damping torque 

decrease, which make the vehicle body is more sensitive response to outside interference. This reason has 

brought a lot of technical difficulties to its dynamics modeling, guidance, control and attitude stability[2]. 

Foreign countries have carried out the research on the problem of dynamic modeling and stability control, and 

the corresponding results are published. The literature proposes supercavitating vehicle control problems, and 

gives control based on feedback linearization method[3]. On the basis of the literature [3], the literature [4-6] 

studies the absolute stability of the longitudinal motion model of the vehicle by means of the bifurcation analysis, 

and gives the feedback linearization control scheme. Based on the conditions for the existence of sliding force 

for switch control judgment, the literature [4-6] gives the design scheme of LQR controller. And other 

literature chose the same as the [7] to determine the basis of the same switch control, and gave a further 

feedback linearization control scheme for nonlinear model. However, these studies are based on precise 

model of the supercavitation vehicle, very few of these research focused on the uncertainty model. The 

uncertainties of the bubble oscillation, fluid dynamic coefficient perturbation, cavitation number perturbation 

and external disturbance are happened in the actual sailing of the supercavitating vehicle, which are difficult to 

meet the matching conditions and bright about the control problems of attitude stability.  

In this paper, the attitude tracking controller is designed based on Backstepping method, which substitute 

the continuous sliding mode controller for the traditional sliding mode controller. Mathematical simulation 

shows that the attitude tracking controller can make the vehicle has good dynamic performance and 

robustness. 
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The Time delay nonlinear mathematical model of underwater high speed vehicle  

Because of the complexity of the high-speed underwater cruising vehicle, this paper mainly studies the 

longitudinal motion. The vehicle is mainly affected by the lift 
cavF  which acting on the position of the head 

cavitator, the gravity 
gF  which acting on center of mass, the lift 

fF  which acting on the rudder and the sliding 

force 
planF  which generated by tail slap between vehicle body and the cavity. Because of the influence of the 

shape memory effect of the sliding force, the mathematical model of the underwater high speed vehicle has a 

strong nonlinear and time delay. The expression of the nonlinear sliding force is presented as: 
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Where, z  represents dive depth of the vehicle, w  represents longitudinal velocity,   represents pitch 

angle, q  represents pitch rate, ,c f   as a control input, V  represents velocity of vehicle, R  represents the 

radius column of vehicle, 
cR  represents the radius of cavitation at the end of a vehicle. 

Based on the precise mathematical model of the longitudinal motion of the vehicle in [4-6] and the analysis 

of the uncertainty, let system state is  1

T
x z  ,  2

T
x w q ,control input is 

T

f nu      . 

The nonlinear equations can be obtained as following: 
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The meaning and parameter setting of related symbols refer to [3-6]. The  2 ,A B t  、 represent 

uncertainty of system matrix
2A and control matrix  0 ,B t   respectively,  ,f x t  represent external 

interference of the vehicle,  ,d x t  represent un-matched uncertainty of vehicle, such as 

     1 1,
T

d dd x t z z         represent sensor error. 

Among them,
1 2 、  are unknown constant, 

d dz 、  are reference tracking track. 

Assume 1:   1 1,d x t   , where 
1  is unknown bounded positive constant.  1 1= x   is known smooth 

function. 

Assume 2: There is unknown bounded constant 1  、
1  and 

2 . So that 0B B  , 22 1A   , 

  2,f x t   establishment. 
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The Attitude tracking controller design based on Backstepping method 

Define 
1 2d dx x、  as the expected output of equation (3), and suppose it is a bounded continuous differentiable 

function. Introduce following errors coordinates: 

1 1 1de x x                                                                                                                                            (4) 

1 1 1de x x                                                                                                                                            (5) 

The following tracking error state equation can be obtained: 

 1 1 1 2 1 1 2 1, d d de Ae e d x t A x x x                                                                                                         (6) 

              2 2 2 2 0 2 2 2 2, , , , , , ,g p p d de A t A e B t B t u C D F x t f x t A t A x x                                (7) 

Define
1  is expected value for

2dx , that is virtual controller to be designed. Define: 

1 1z e                                                                                                                                                 (8) 

2 2 1z e                                                                                                                                              (9) 

From nonlinear system (3)、(8)and(9),it can be get: 

 1 1 1 2 1 1 2 1 1, d d dz A z z d x t A x x x                                                                                                  (10) 

           2 2 2 2 0 2 1, , , , , ,g p p dz A t A x B t B t u C D F x t f x t x                                                 (11) 

Controller design steps are as follows: First step: The design of virtual control. Select sliding mode surface 

as
1 1S z , design the following continuous differentiable approximate variable structure virtual controller 

without regard to 
2z  : 

    1 1 1 1 1 1 1 2 1 1 1 1
ˆ tanhd d dz A z A x x x t z                                                                                    (12) 

 1 1 1 1 1

1

1
ˆ ˆz t

q
                                                                                                                          (13) 

Where,
1 10, 0q r   are design parameters,

1̂  is estimate of the uncertainty,  1 t  is the negative feedback 

which is introduced to make the identification results stable. 
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This hyperbolic tangent function is continuously differentiable, when   0t  ,    1 1tanh sgnz z  . Hyp- 

erbolic tangent function replacement symbols function which will cause control signals discontinuous and by 

selecting function  t  , which can make the system keep good robustness, and the steady state error can 

also meet the requirements. At the same time, the smooth control law can be obtained. 

Consider the following Lyapunov function: 
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Differentiate 
1V for time along with (10), it can be got: 
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From (12)~(14)、(16), it can be got: 
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Second step: The design of actual control. 

For subsystem (11): 

           2 2 2 2 0 2 1, , , , , x, tg p p dz A t A x B t B t u C D F x t f x                                                  (18) 

Select the sliding mode surface as 
2 2S z  . When we does not consider the uncertainty of the system and 

external disturbance. According to the 2 2 2S z   (
2  is positive definite symmetric matrix), can get the 

following equivalent control: 
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  1

0 1 2 2 2 2 2, ,eq g p p du B z z A x C D F x t x                                                                                        (19) 

Assume 3:    2 2 1 2 2, 1eqA x B t u           ,  

where 
2  is unknown bounded positive constant. 

 2 2 x   is known smooth function. Then adopting the following continuous differentiable approximation 

variable structure controller: 
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Where, 
2 0q   , 

2 0r   are design parameters; 
2̂  is estimate of uncertainty;  2 t  is negative feedback 

which to stabilize identification results, 
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Consider the following Lyapunov function: 

     
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Differentiate 
1V for time along with (11), it can be got: 
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From (20)~(22)、(24), it can be got: 
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So as to realize the stabilization of the system, it will be asymptotically stable finally. 

Simulation analysis 

The model of the longitudinal motion of the supercavitation vehicle described in (3) is studied by the structure 

parameters of the vehicle as follow: 

Gravity acceleration 29.81 /g m s , Vehicle density 3

0 2000 /kg m  , Tail rudder similarity coefficient 0.5n   , 

Radius of cavitation 0.0191nR m , Radius column of vehicle 0.0508R m , Total length of vehicle 1.8L m , 

Speed of vehicle 75 /V m s , Cavitation number 0.03  , body Mass of vehicle 22m kg , Moment of inertia 
25.1847yJ kgm . 

In order to investigate the effect of the controller under the condition of hydrodynamic coefficient greatly 

perturbed and large external disturbance, we pull side the hydrodynamic coefficients system 50%, cavitation 

number perturbed ranges ± 20%, and define the interference force and moment are  1 sin 2 t , which the 

amplitude is roughly equivalent to gravity’s 10%. We pull side the sliding force 10%, The amplitude of the 

cavitation bubbles is  0.02 cR R ,      1 1,
T

d dd x t z z        , the expectations of 
1 2,   are 0.01. The 

system initial state are    0 1 0.05 0 0
T

x  . 

Taking into account the practical effectiveness of the vehicle, the control law must have the following 

indicators: the quick response and the limiter feature of control .Since this article mainly study the attitude 
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tracking performance of vehicle, the rudder deflection angle and cavitation deflection angle range are taken as 

20o . 

In this paper, the attitude tracking controller are designed, which under condition of the adaptive law and 

the attitude of the initial value of supercavitation vehicle and ignore the noise measuring element. Simulation 

analysis of attitude tracking for the following reference trajectory as followed: 

 1

T

d d dx z  ,  2

T

d d dx w q .Where,  sin , , 0,d

d d d d d

z
z t w q

V
     

   . 

After the numerical simulation of above control method, the state of the system response curve, a control 

law curve and the tail rudder wet rate curve are shown in Figure 1, which point line and solid line represents 

reference trajectory and the system response curve respectively. From the simulation results, we can see that 

the Backstepping method is used to design the supercavitation vehicle attitude tracking controller, the vehicle 

complete the attitude tracking task so fast, and error within the allowable range. From the point of control 

precision and stability, the inhibition of mismatched uncertainty and external disturbance can satisfy the 

requirements of the system design at the same time. 
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(b) T ime history of the control 

Figure 1.  Attitude maneuver curve 

Conclusions 

This paper designed the attitude tracking controller based on Backstepping method for the longitudinal motion 

equation of the vehicle with non matching uncertainties. The whole design process is divided into two steps: 

the first step is to design a virtual controller use variable structure control technology. In order to reduce the 

conservatism of the controller, the adaptive control law is given. The second step is to design a robust attitude 

tracking controller based on Backstepping method and variable structure control technology. Finally, the 

proposed control method is used to simulate the model of the supercavitation vehicle. Simulation results 

further verify the correctness of the proposed design method and theoretical analysis, and have a certain 

engineering application prospect. 

 

27



 

 

Acknowledgements 

This study has been supported by the Innovation Fund of China Ship Research and Development Academy. 

References 

[1]  Savchenko Y.:Supercavitation problems and perspectives Fourth International Symposium on Cavitation, 

California: California Institute of Technology. Pasadena, CA USA, No. 003,( 2001). 

[2] Kirschner I, Uhlman J.: Overview of high-speed supercavitating vehicle control. AIAA Guidance, 

Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics 

and Astronautics Inc, p:3100-3116,(2006).. 

[3] Dzielski J, Kurdila A. A benchmark: Journal of Vibration Control, vol.9,(2003). P.791-804 

[4]  Lin G J, Balachandran B, Eyad H A. :Nonlinear dynamics and control of supercavitating bodies, AIAA 

Guidance, Navigation, and Control Conference 2006, Keystone, Colorado.p: 3151-3164,(2006). 

[5] Lin G J, Balachandran B, Eyad H A. IEEE J Oceanic, vol.32(4): (2007) ,p:753-761 

[6] Lin G J, Balachandran. Eyad H A. Journal Dynamic System and Measure Control, vol.130(2), 

(2008),article .No. 021003. 

[7] Shao Y F, Mesbahi M, Balas G. “Planing, switching and supercavitating flight control”. AIAA Guidance, 

Navigation, and Control Conference. Reston,VA, USA: AIAA, 2003, article No. 5724. 

 

28




