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Abstract: This paper aims at estimating the time constant of the asymptotically stable control system. 
The energy varying rate of the system states is defined based on Lyapunov function and its differential 
function. The minimum energy attenuation rate is defined and solved by the function condition extreme 
method. The system time constant is estimated to be double of the multiplicative inverse of the 
minimum energy attenuation rate by taking into account of that the system energy is one order higher 
than the system state. Application example about a third order control system indicates that the solved 
time constant is just the response time of the initial states and yet it is irrelevant to the initial states of 
the system. So this time constant can serve as the estimation value of the response time and this 
estimated time constant can be used to evaluate the rapidity performance for the asymptotically stable 
control system. 

Introduction 
The time constant is an important index to evaluate the dynamic performances of the asymptotically 
stable control system. It manifests the response speed to the initial condition or the reference input of 
the control system. Usually, the time constant is derived from the unit step response of the control 
system and it is assessed by the indexes such as delay time, rising time, peak time, and settle time etc. 
However, different control systems have different time constants. It is difficult to obtain this time 
constant by the analytical method especially for the higher order control system [1]. 

From Lyapunov stability theory [2, 3], it is noticed that Lyapunov function is an energy function in 
essence and its differential function about the time represents the varying rate of the energy of the 
system states. When the energy of the system states is exhausted asymptotically, the system must tend 
to its equilibrium states and thus the system is deemed to be asymptotically stable [4]. So in this paper, 
Lyapunov function and its differential function are used to estimate the time constant of the control 
system.  An energy varying rate function, which results from Lyapunov function and its differential 
function, is defined first. Then the minimum energy attenuation rate is defined and solved by the 
function condition extreme in which Lyapunov equation is used. And then the multiplicative inverse of 
the minimum energy attenuation rate is calculated and its twofold is defined to be the time constant of 
the free response of the control system. 

Time Constant Estimation Based on Lyapunov Function and Its Differential Function 

Definition of the Minimum Energy Attenuation Rate. A linear time-invariant (LTI) control system 
can be represented by state space model as:  
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where x is state vector, u is control input vector, and y is output vector. A, B and C are state matrix, 
input matrix and output matrix with appropriate dimensions, respectively. For this control system, its 
energy can be represented by Lyapunov function, ( )V x , which is a positive definite quadratic function: 

T( ) ,V x x x= P                                   
(2) 

where P is an arbitrary symmetrical positive definite matrix. And its differential function ( )V x&  can be 
represented as a negative definite quadratic function: 

Td ( )( ) ,
d

V xV x x x
t

= = −& Q                                        
(3) 

where Q is also a symmetrical positive definite matrix. 
In accordance with above definitions, ( )V x  can scale the energy distance from the current system 

state x to the system equlibrium state xe, and ( )V x&  can scale the energy varying speed from the current 
system state x to the system equlibrium state xe.  So an index γ, which can scale the system energy 
varying rate, is defined as: 

( ) .
( )

V x
V x

γ = −
&                                   

(4) 
This energy varying rate is also the function of system state x. If the system is asymptotically stable,  

( )V x  is positive and ( )V x&  is necessarily negative, and therefore γ is positive necessarily.  The greater γ is, 
the more quickly ( )V x  decreases, and the more quickly the system state x tends to the equilibrium state 
xe. Nevertheless, due to the nonuniqueness of Lyapunov function, it is difficult to get the energy 
varying rate γ directly. For this reason, defining the minimum of γ and naming it the minimum energy 
attenuation rate γmin: 

min
( )min ,
( )

V x
V x

γ
 

= − 
 

&                                  
(5) 

this is a constant for the asymptotically stable control system and it indicates the minimum decay speed 
of the system energy. 

Solving the Minimum Energy Attenuation Rate. According to the definitions Eq. 2 and Eq. 3, Eq. 
5 can be derived as: 
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(6) 

where P and Q meet Lyapunov equation because of the asymptotical stability of the control system: 

T .= −A P + PA Q                                   
(7) 

In order to solve the minimum energy attenuation rate γmin, normalizing the Lyapunov function ( )V x , 
i.e. let xTP x =1, then there yields: 

T
T T

min Tmin min[ , 1],
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(8) 

it is a function extreme problem with equality constraint condition. And then by setting up a Hamilton 
function:  

T T( , ) [ 1],H x x x x xµ µ= + −Q P                                  
(9) 
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the function extreme problem with equality constraint condition is turned to be a function extreme 
problem without constraint condition. Solving this function extreme problem, there gets: 

-1
m in min ( ),λγ = Q P                                      

(10) 
where λmin (QP -1) denotes the minimum eigenvalue of matrix QP -1.  

Time Constant Estimation. In essence, Lyapunov function ( )V x  is an energy function. In the 
viewpoint of physics, energy ( )V x  is one order higher than the system state x. So the decaying speed of 

( )V x  is quicker than the decaying speed of the system state x. Under this consideration, the system time 
constant Tmax, which is the system state decaying time of free response, is estimated to be the two times 
of the multiplicative inverse of the minimum energy attenuation rate γmin: 

max
m in

2T
γ

=                                    
(11) 

Application Example 
There is a third order control system and its state equation is as following: 

0 1 0 0
0 2 1 0 .
3 0 1 3

x x u
   
   = − +   
   − −   

&
                                   

(12) 

Given Q to be a symmetrical positive definite matrix, e.g. three-dimension unit matrix: 

1 0 0
0 1 0 ,
0 0 1

 
 =  
  

Q                                    
(13) 

then solving Lyapunov equation: 

0 0 3 0 1 0 1 0 0
1 2 0 0 2 1 0 1 0 ,
0 1 1 3 0 1 0 0 1

−     
     − + − = −     
     − − −     

P P                                    
(14) 

the symmetrical positive definite matrix P is derived: 

10.8333 4.1667 0.1667
4.1667 2.3333 0.8333 ,
0.1667 0.8333 1.3333

 
 =  
  

P                                    
(15) 

then the eigenvalues of matrix QP-1 can be solved: 

1 2 30.0797, 0.5687, 5.3516,λ λ λ= = =                                    
(16) 

thus, the minimum energy attenuation rate can be derived: 

min 1 2 3min( , , ) 0.0797,λ λ λγ = =                                    
(17) 

and the system time constant Tmax can be calculated to be: 

max
min

2T 25.1096.
γ

= =                                    
(18) 
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If there is given another symmetrical positive definite matrix Q, the solved symmetrical positive 
definite matrix P will also be changed. Anyway, the minimum eigenvalue of matrix QP-1 is nearly 
unchangeable, and so the system time constant Tmax is nearly unchangeable. 

In order to verify the system time constant Tmax, given arbitrary initial states, e.g. xi1=1, xi2=0, and 
xi3=1, the free response of the system, i.e. the initial state responses of the system are drawn as Fig. 1 is 
shown. From this figure, it can be seen that three state responses are all getting into the range from 
-0.02 to 0.02 within 25.1096 seconds. Given another initial states, the response time is approximatively 
unchangeable. This result indicates that above estimated time constant is correct. 
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Fig. 1 Free response of the system (The initial state responses) 

Conclusion 
The time constant of the asymptotically stable control system is estimated on the basis of Lyapunov 
function and its differential function. By Lyapunov function and its differential function, the system 
energy varying rate is defined and the minimum of this energy varying rate is defined as the minimum 
energy attenuation rate. By function condition extreme method, the minimum energy attenuation rate is 
solved and it is the minimum eigenvalue of a matrix which is dependent upon Lyapunov equation. And 
then the time constant, which is the decaying time of the initial states of the system, is estimated as 
double of the multiplicative inverse of the minimum energy attenuation rate under the consideration 
that the system energy is one order higher than the system state. 
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