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Abstract: This paper mainly discussed the problem of recognizing objects by their features. The 
maximal clique approach is seen to be capable of finding solutions to recognize objects and scene 
analysis. The main focus of this thesis is studied that the GHT is particularly well suited to object 
detection in real space as it is one type of spatial matched filter. Finally, this paper compared the 
computational requirements of the maximal clique and GHT approaches to object location. The 
computational problems of the GHT are examined more generally. 

 Introduction  
The generalized Hough transform is of great importance for the detection of features such as 

lines, circles, and ellipses, and for finding relevant image parameters. And the GHT can detect 
arbitrary shapes[1]. 

Gope and Kehtarnavaz(2007) have demonstrated a new method fir affine matching between 
planar point sets[2]. The method makes use of the convex hulls of the point sets and performs 
matching between them: this is  a useful approach because (a) convexity is affine invariant and (b) 
use of the convex hull is intrinsically robust. Silletti(2011) have devised a variant approach to 
spectral graph matching in which new similarity measures are applied[3]. The approach permits 
application to variety of types of image and yields results that are said to show significant 
improvements over certain preexisting methods. When using the GHT to locate an object, edge 
pixels are detected and used to compute candidate positions for the localization point L. To achieve 
this, it is necessary to threshold the edge gradient magnitude[4]. How should the threshold be 
choosen? 

The generalized Hough transform 
The standard Hough technique can detect arbitrary shapes. In principle, it is trivial to achieve 

this. First, we need to select a localization point L within a template of the idealized shape. Then, 
we need to arrange such that, instead of moving from an edge point a fixed distance R directly 
along the local edge normal to arrive at the center, as for circles, we move an appropriate variable 
distance R in a variable direction φ so as to arrive at L:R and φ are now functions of the local edge 
normal direction θ. There is shown in Fig.1. 

 
Fig.1. Computation of the GHT 
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Under these circumstances, votes will peak at the preselected object localization point L. The 
functions R(θ) and φ(θ) can be stored analytically in the computer algorithm, or for completely 
arbitrary shapes they may be stored as lookup tables. In either case, the scheme is beautifully simple 
in principle but two complications arise in practice. The first arises because some shapes have 
feature such as concavities  and holes, so several values of R and φ are required for certain values of 
θ as shown in Fig.2. The second arises because we are going from an isotropic shape to an 
anisotropic shape, which may be in a completely arbitrary orientation. 

 
Fig.2. A shape exhibiting a concavity 

To cope with the first of these complications, the lookup table must contain a list of the 
positions r, relative to L, of all points on the boundary of the object for each possible value of edge 
orientation θ. Then, on encountering an edge fragment in the image whose orientation is θ, 
estimates of the  position of L may be obtained by moving a distance R=-r from the given edge 
fragment. Clearly, if the R-table has multivalued entries, only one of these entries can give a correct 
estimate of the position of L. However, at least the method is guaranteed to give optimum 
sensitivity, since all relevant edge fragments contribute to the peak at L in parameter space. This 
property of optimal sensitivity reflects the fact that the GHT is a form of spatial matched filter: it is 
analyzed in more detail below. 

The second complication arises because any shape other than circle is anisotropic. Since in 
most applications (including industrial applications such as automated assembly) object orientations 
are initially unknown, the algorithm has to obtain its own information on object orientation. This 
means adding an extra dimension in parameter space(Ballard,1981). Then each edge point 
contributes a vote in each plane in parameter space at a position given by that expected for an object 
of given shape and orientation. Finally, the whole of parameter space is searched for peaks, the 
highest points indicating both the locations of objects and their orientations.  

We may explore the theory underpinning the GHT. There are three problems need to be 
addressed: 

1. The parameter space weighting problem: In introducing the GHT, Ballard mentioned the 
possibility of  weighting points in parameter space according to the magnitudes of the 
intensity gradients at the various edge pixels. But when should gradient weighting be used in 
preference to uniform weighting? 

2. The threshold selection problem: When using the GHT to locate an object, edge pixels are 
detected and used to compute candidate positions for the localization point L. To achieve this, 
it is necessary to threshold the edge gradient magnitude. How should the threshold be chosen? 

3. The sensitivity problem: Optimum sensitivity in detecting objects does not automatically 
provide optimum sensitivity in detecting objects does not automatically provide optimum 
sensitivity in locating objects, and vice versa. How should the GHT be optimized for these 
two criteria?  

The maximal clique algorithm 
We give the maximal clique algorithm. The checking of which subgraphs are maximal cliques 

is a simple problem. However, in real matching tasks it can quickly become unmanageable.  
There is shown in Table 1. It shows that is perhaps the most obvious type of algorithm for 

finding maximal cliques. It operates by examining in turn all cliques of a given number of nodes 
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and finding what cliques can be constructed from them by adding additional nodes. This permits all 
cliques in the match graph to be identified. However, an additional step is needed to eliminate all 
cliques that are included as subgraphs of a new larger clique before it is known which cliques are 
maximal. 

Table 1. The maximal clique algorithm. 
set clique size to 2;    //this is the size already included by the match graph 
While (newcliques=true) {  //newcliques still being found 
     increment clique size; 
     set newcliques=false; 
     for all cliques of previous size 

 {   set all cliques of previous size to status maxclique; 
            for  all possible extra nodes 
                 if extra node is joined to all existing nodes in clique 

 {    store as a clique of current size; 
                       set newcliques=true; 
                 } 
        } 
  // the larger cliques have now been found  
 for all cliques of current size 
      for all cliques of previous size 
           if all nodes of smaller cliques are included in current clique 
               set smaller clique to status not maxclique; 
  // the subcliques have now been relabeled 
} 

In view of the evident importance of finding maximal cliques, many algorithms have been 
devised for the purpose. It is probable that the best of these is now close to the fastest possible speed 
of operation. Unfortunately, the optimum execution time is known to be bounded not by a 
polynomial in M but by a much faster varying function. Specifically, the task of finding maximal 
cliques is akin to the well-known traveling salesman problem and is known to be “NP-complete” 
implying that it runs in exponential time. Thus, whatever the run-time if for values of M up to about 
6, it will typically be 100 times slower for values of M up to about 10, and 100 times slower again 
for M greater than ~14. In practical situations, we can use the GHT to tack this problem. 

Using the GHT for feature collation 
How the GHT can be used as an alternative to the maximal clique approach, to collate 

information from point features in order to find objects. To apply the GHT, we first list all features 
and then accumulate votes in parameter space at every possible position of a localization point L 
consistent with each pair of features as shown in Fig.3. This strategy is particularly suitable in the 
present context, as it corresponds to the pairwise assignments used in the maximal clique method. 
To proceed,  it is necessary merely to use the interfeature distance as a lookup parameter in the 
GHT R-table. For indistinguishable point features, this means that there must be two entries for the 
position of L for each value of the interfeature distance. Note that we have assumed that no 
symmetries exist and that all pairs of features have different interfeature distances. If this were not 
so, then more than two vectors would have to be stored in the R-table per interfeature distance value. 
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Fig.3. Method for locating L from pairs of feature positions 

In Fig.3, each pair of feature points gives two possible voting positions in parameter space, 
when objects have no symmetries. When symmetries are present, certain pairs of features may give 
rise to up to four voting positions. 

To illustrate the GHT approach outlined above, we apply it to the triangle example shown in 
Fig.4. Fig.4(c) shows the positions at which votes are accumulated in parameter space. There are 
four peaks with heights of 3,1,1 and 1, it being clear that, in the absence of complicating occlusions 
and defects, the object is locatable at the peak of maximum size. 

 
Fig.4. A matching problem-a general triangle 

      We compare the computational requirements of the maximal clique and GHT approaches to 
object location.  
      For an object possessing n features, the match graph contains n2 nodes, and there are 
n2C2=n2(n2-1)/2 possible pairwise compatibilities to be checked in building the graph. The amount 
of computation at this stage of the analysis is O(n4). To this must be added the cost of finding the 
maximal cliques. Since the problem is NP-complete, the load rises at a rate that is faster than that of 
polynomial, and probably exponential in n2. 
     Now consider the cost of getting the GHT to find objects via pairwise compatibilities. As has 
been seen, the total height of all the peaks in parameter space is in general equal to the number of 
pairwise compatibilities in the match graph. Hence, the computational load is of the same order, 
O(n4). Next comes the problem of locating all the peaks in parameter space. In this case, parameter 
space is congruent to image space. Hence, for an NÍN image only N2 points have to be visited in 
parameter space and the computational load is O(N2). However, that an alternative strategy is 
available in which a running record is kept of the relatively small numbers of voting positions in 
parameter space. The computational load for this strategy will be O(n4): although of a higher order, 
this often represents less computation is practice. 

Conclusion 
The task of recognizing objects by their features tends to involved considerable computation 

and GHT can in some cases provide a satisfactory solution to these problems. When this happens, it 
is because the graph theory representation is not well matched to the relevant real-space template 
matching task in the way that the GHT is. The GHT is particularly well suited to object detection in 
real space as it is one type of spatial matched filter. 
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