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Abstract. This paper investigates the problem of robust stability for  bidirectional associative 
memory (BAM) neural networks of neutral type with time-varying delays and linear fractional 
uncertainties. By employing integral equality and constructing a new Lyapunov-Krasovskii 
functional, a sufficient criterion is proposed on robust asymptotic stability for a given BAM neural 
networks with linear fractional uncertainties. The parameters uncertainties are expressed in a linear 
fractional form, which includes the norm bounded uncertainties as a special case. Numerical 
examples are provided to illustrate the effectiveness and less conservatism of the main result. 

Introduction 

Over the past decades, bidirectional associative memory (BAM) neural networks have received 
considerable attention due to their extensive applications in the fields of pattern recognition, 
artificial intelligence, automatic control engineering because of its better abilities of information 
memory and information association. Recently, a great number of researchers have studied stability 
properties of the neural networks and presented various sufficient conditions for the asymptotic or 
exponential stability of the BAM neural networks, see, e.g. [1-3]. 

Usually, the integration and communication delays are unavoidably encountered both in 
biological and artificial neural systems, which frequently leads to an oscillation, divergence and 
furthermore, or instability of neural networks. So, some results on stability of BAM networks with 
time delays have been developed in [1,2]. In practice, the stability of a neural network may often be 
destroyed by its unavoidable uncertainties due to the existence of modeling errors, external 
disturbance and parameter fluctuation in the applications and designs of neural networks. Therefore, 
when both the time delays and parameter uncertainties are taken into account in neural networks, 
robust stability conditions have been given in [4,5]. 

In addition, owing to the complicated dynamic properties of the neural cells in the real world, the 
existing neural network models in many cases can not characterize the properties of a neural 
reaction process precisely. It is natural and important that systems will contain some information 
about the derivative of the past state to further describe and model the dynamics for such complex 
neural reactions. This new type of neural networks is called neutral neural networks or neural 
networks of neutral-type. However, up to date, the stability analysis for neural networks of 
neutral-type has been rarely investigated [6,7].  

In this paper, we focus on the problem of the robust asymptotic stability for BAM neural 
networks of neutral type with time-varying delays and linear fractional uncertainties. By 
introducing a new integral equality and constructing a Lyapunov-Krasovskii functional, novel 
delay-dependent condition is established checking the asymptotic stability for the considered BAM 
neural system. The parameters uncertainties are expressed in a linear fractional form, which 
includes the norm bounded uncertainties as a special case. Finally, a numerical example is provided 
to illustrate the effectiveness of the proposed result, which is less conservative than that in [6,7]. 
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Problem Statement and Preliminaries 

Consider the following uncertain delayed BAM neural network of neutral-type: 
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where 1 2( ) [ ( ), ( ), , ( )]T n
nu t u t u t u t   and 1 2( ) [ ( ), ( ), , ( )]T m

mv t v t v t v t    are the neuron state 

vectors, 1 2( ) [ ( ), ( ), , ( )]mf f f f        and 1 2( ) [ ( ), ( ), , ( )]ng g g g        are the activation functions,   

and   denote the constant external inputs, 0h  and 0d  are neutral delays, ( )t  and ( )t  are  
state time-varying delays, which are differentiable functions that satisfy 

0 ( ) , ( ) , 0 ( ) , ( ) ,d dt t t t               

for all 0t   and prescribed scalars 0, 0, 0, 0d d       . 1 2 1 2( ), ( ), ( ), ( ), ( ), ( )T TA t W t W t B t V t V t  

are time-varying matrices which are assumed to be of the following form: 
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1( ) ( )[ ( )] , 0 ,Tt F t I JF t I J J                  (3) 

where 1 2( , , , ) 0nA diag a a a   and 1 2( , , , ) 0mB diag b b b   are positive diagonal matrices, 

( ) ( )ij m n ij n mW w V v  ，  are interconnection matrices representing the weight coefficients of the 

neurons, 1 2 1 2 3, , , ,H H Z Z Z are known real constant matrices with appropriate dimensions and ( )F t  

is an unknown time-varying matrix function satisfying 
( ) ( ) , 0.TF t F t I t                   (4) 

Remark 1. It is worth noting that linear fractional uncertainties are more general than the usual 
norm-bounded uncertainties, because when 0J  , the linear fractional uncertainties can be 
changed into the norm-bounded uncertainties. 

   In addition, we will assume the activation functions ( )jf   and ( )ig  in (1) are satisfies the 

following conditions: 

(A1): ( )jf   and ( )ig  are bounded on , 1,2, , , 1, 2, , .i n j m    

(A2): ( )jf   and ( )ig   are Lipschitz continuous, there exist real scalars 0, 0j il k  , such that 

| ( ) ( ) | | |, | ( ) ( ) | | |,j j j i i if x f y l x y g x g y k x y         for any , , 1, 2, , , 1, 2, , .x y i n j m     

By using the well-known Brouwer fixed point theorem, one can see that there exists one 
equilibrium point for system (1). Then system (1) can be written as 
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From (A1) and (A2), we can derive that the activation functions ( )jf   and ( )ig   satisfy 

(H1): ( )jf   and ( )ig  are bounded on , 1,2, , , 1, 2, , .i n j m    

(H2): ( )jf   and ( )ig   are Lipschitz continuous, there exist real scalars 0, 0j il k  , such that 

| ( ) ( ) | | |, | ( ) ( ) | | |,j j j i i if x f y l x y g x g y k x y       

for any , , 1, 2, , , 1, 2, , .x y i n j m     

(H3): (0) 0, (0) 0, 1,2, , , 1, 2, , .j if g i n j m      

Main results 

In this section, we will present the delay-dependent conditions ensuring the robust asymptotic 
stability of the equilibrium point for delayed BAM neural network of neutral-type with linear 
fractional uncertainties. 

Firstly, we consider the asymptotic stability criterion for the nominal system: 
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Theorem1. Under (H1)-(H3), the origin of the delayed BAM neural network in (6) is 

asymptotically stable if there exist matrices 11 12 11 12
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, ( 1, ,6), , ( 1, 2,3)i i j jM N i M N j   with appropriate dimensions respectively, such that the 

following inequality holds: 
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Proof. Develop the following Lyapunov-Krasovskii functional candidate as 
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Calculating the time derivative of ( , )t tV x y along the trajectory of system (6) gives 
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In light of (H1)-(H3), for diagonal matrices 1 20, 0Y Y  , we can obtain 

1 1

2 2

0 ( ( )) ( ( )) ( ( ( ))) ( ( ( ))),

0 ( ( )) ( ( )) ( ( ( ))) ( ( ( ))).

T T

T T

x t t KT Kx t t g x t t T g x t t

y t t LT Ly t t f y t t T f y t t

   

   

     

     
        (11) 

  According to (9)-(11), we have 

1 1
1 1 1 1( )

1

2 2
2 2 2 2( )

2

( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) .

( )

tT T T T
t t Tt t

tT T T
Tt t

X M t
V x y t t t X t t x d

M S x

X N t
t X t t y d

N S y






      




    







            
  

   
          





 





      (12) 

Let 1 1
1 1 2 2,T TX MS M X NS N   , one can see that 1 2

1 2

0, 0.T T

X M X N

M S N S

   
    

   
 

Then, we have 1 1
1 1 1 2 2 2( , ) ( ) ] . [ ( )T T T

t tV x y t S S t             

By Schur's complements lemma, we know 1 1
1 1 1 2 2 2 0,T TS S           which is equivalent to 

0   in (7). Therefore, we have ( , ) 0t tV x y  . Then, by the standard Lyapunov functional theory, it 

concludes that the origin of the given delayed BAM neural network system (6) is asymptotically 
stable. This completes the proof. 

Next, we consider the robust asymptotic stability for the given BAM neural networks (5). 
Theorem 2. Under (H1)-(H3), the origin of the delayed BAM neural network in (5) is robust 

asymptotically stable if there exist scalars 1 20, 0   , matrices 11 12 11 12

22 22

0, 0,
P P Q Q

P Q
P Q
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Proof. From Theorem 1 and (2), the robust asymptotic stability condition for system (5) can be 
described as 
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By Schur's complements lemma, we know (14) and (15) are equivalent. Therefore, according to 
0   in (13), we have ( , ) 0t tV x y  .Then, by the standard Lyapunov functional theory, it concludes 

that the origin of the given delayed BAM neural network system (5) is robustly asymptotically 
stable. This completes the proof. 

Numerical examples 

Example 1. Consider the system (5) with the following parameters 

   

1 2 1

2 1 2 1 2 3

2 2

3 0 0.3 0.25 0.1 0.2 2.2 0 0.1 0.2
, , , , ,
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0.2 0.1
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0.1 0.25

( ) 1.5 cos , ( ) 1.2 sin , 3, 5,

T

A W W B V
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t t t t d h 

         
             
         
 

        
 
   

1 1
( ) (| 1 | | 1 |), ( ) (| 1 | | 1 |), 0.2

2 2j j j i i if y y y g x x x J        

 

For this example, the criteria in [7] is NOT applicable because the neutral delays are not equal to 
the state delays, furthermore, this system includes uncertain parameters. Therefore, we cannot 
conclude whether this delayed neural network is robustly asymptotically stable or not. However, by 
resorting to Theorem 2 and the Matlab LMI Control Toolbox, we can obtain a set of feasible 
solutions. Therefore, by Theorem 2, we conclude that system (5) with the above parameters is 
robustly asymptotically stable. The convergence dynamics of the system in Example 1 is shown in 
Fig. 1. 
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Fig.1. Convergence dynamics of the system in Example 1. 

Conclusion 

This paper has studied the problem of robust asymptotic stability analysis for delayed BAM 
neural networks of neutral-type with linear fractional uncertainties. The parameters uncertainties are 
expressed in a linear fractional form, which include the norm bounded uncertainties as a special 
case. By applying integral inequality technique together with a Lyapunov-Krasovskii functional, the 
novel delay-dependent stability conditions have been established. Finally, an illustrative example 
are given toshow the effectiveness of the obtained results. 
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