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Abstract. Mobility pattern of users is decided by people themselves. However, in the daily life, 
mobile users often repeat regular routes in certain periods. To effectively mine the mobile rules of 
users and allocate the resource among mobile telecommunication operators and Internet Service 
Providers (ISP), grasping the models of human mobility can enable effective network planning and 
advertisement recommending. In this paper, we employ Apriori algorithm method to mine mobile 
users' movement model. The algorithm proposed is based on mining the mobility patterns of users, 
forming mobility rules from these patterns, and finally predicting a mobile user's next movement by 
using the mobility rules. The user mobility patterns are mined from the history of mobile user 
trajectories. In addition to the analysis of individual mobile behavior, it is possible to mine 
population movement regularity from a large number of user mobile patterns. By studying the 
group characteristics the place that a large number of users accessed can be found. Operators can 
optimize the setting of the base station according to the density of users to meet the needs of mobile 
users. 

I. Introduction 

Data collected from the base station of mobile phone users are used to analyze the social 
networks, mine user behavior [1,2]. This work mainly consists of the analysis of user's daily 
activities, building structural model of social relations, finding out the relationship between the 
individuals and the social networks, marking important position information. In addition, there is a 
corresponding application in the studies of the mobile user's location in AdHoc networks. [3,4] 
Wireless network-related researchers also became interested in the behavior of mobile user, and 
collected the data from the Wi-Fi environment for mobile user behavior modeling[5,6]. Gonzalez 
and others also use the data collected from base station for mobile user behavior modeling. 
Gonzalez's studies have shown that there are different laws in user's trajectories because of different 
times, different locations. For example, users tend to move between several important positions, 
spend three-fourths of time in this a few important positions. The most frequent path also appears 
between the several important positions [7]. Association rules are one of the main modes of the 
current data mining methods focusing on establishing links between the different fields of data. [8] 

In this paper, an improved sequential pattern mining algorithm was adopted to find the frequent 
patterns of users which can eliminate the ping-pong effect and a lot of useless candidate set. Using 
users' frequent patterns as well as the probability distribution of time, the user's location can be 
predicted. 
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We obtain group's frequent mobility patterns from the individual user. By analyzing the 
corresponding characteristic group's regularity can be found out. Our work can help operators and 
ISPs support the location-based services, path planning and forecasting, etc. 
Data Set Descrption. The dataset of one city consists of more than 50,000,000 records each day 
from 17th Nov,2012 to 23th Nov,2012 and the connecting subscribers is 3,270,860 which 
occupying the 11.1% of the city’s population 29,450,000. The data has been collected by a telecom 
service provider. Each record consists of the users ID, the traffic type history, the web browsing 
history, the online duration, the start time to connect the base station and the end time to disconnect, 
as well as the phone numbers, and their LAC, CellID. 

II. Apriori Algorithm 

Studies have shown that a mobile user often move regularly in the same way .Association rules 
are rules that describe some potential relationships between data items[9,10]. A typical example of 
association rules is: In supermarkets, 90% of customers who buy the bread and butter will buy milk. 
Its intuitive sense is that customers buying a product will tend to buy other goods. 

 

Fig.1 The procedure of Apriori 

Association rules are one of the main modes of the current data mining methods focusing on 
establishing links between the different fields of data. It can find out dependencies between a 
number of areas under the given condition. Currently the classical algorithm is Apriori, its process 
is: 1, according to the user's trajectories user mobility patterns are mined; 2, on the basis of these 
patterns mobility rules are extracted; 3, mobility predictions are accomplished by using these rules 
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B. The time information in mobility patterns. On weekdays or weekends, there will be obvious 
difference on the movement path. For example, people usually need to go to work, students go to 
school on weekdays. While on weekends they may go out for an outing. Meanwhile, within a day, 
in the morning, afternoon or evening the user's mobile path will have difference too. This is mainly 
based on this consideration: In the morning users usually go to work or school. In the afternoon the 
behavior is on the contrary. Moreover, the case of the evening will be more complicated. Therefore, 
based on the above considerations, the time information of the mobile pattern is divided into two 
cases to consider: 

Case 1: Classified according to the working days and weekends. Each frequent pattern in the 
frequent movement pattern set stores the distribution of the week(1 represents weekends, 0 
represents workdays). 

Case 2: The distribution of time. The day is divided into three periods: {[6: 00, 12: 00], [12: 00, 
18: 00], [18:00, 6:00]}, and they are represented by 0, 1, 2. The start time of the frequent patterns 
are divided into three cases, and count the number of instances separately. So the user movement 
patterns also contain the time distribution of the user's path at all locations It can be analyzed from 
the distribution that which place is more important for the user.  

For example, according to the previous method, then the trajectory of user_A is as follows: 
[389, 4247, 389, 7645, 389, 28082, 4247] 
If each cell is replaced by a set of <c, x, y>, where c is the cell number, x represents weekend or 

weekday, y represents the period of the day, then the trajectory of user_A can be expressed as: 
[<389,1,0>,<4247,1,0>,<389,1,1>,<7645,1,1>,<389,1,1>,<28082,1,2>,<4247,1,2>] 
So when generating frequent patterns, we not only consider the continuous changes between 

cells, but also consider the change of time, thus frequent patterns are more accurately. 

III. Group’s Frequent Mobility Patterns 

Through the previous work, we constructed individual movement pattern. But, in addition to the 
analysis of individual, if we are able to dig up some group characteristics from a large number of 
user mobile patterns, it may be useful in the study of group activities.First we introduce the concept 
of group support. As shown in the formula: |group| is the total number of users in a group, FP is 
individual frequent patterns. 

Groupsupൌ
∑ ୊୔	ୟ୮୮ୣୟ୰	୧୬	୳ୱୣ୰ᇲୱ	୮ୟ୲୲ୣ୰୬	ୱୣ୲౟స౤
౟సభ

|୥୰୭୳୮|
.                                          (2) 

To become a frequent pattern of groups, they need to be frequent patterns of one user or some 
users. If a mobile user mobility patterns is not frequent in the collection of patterns, then they can’t 
be frequent patterns of groups. If a mobility pattern appears in the pattern set in some users, and is 
greater than the group support threshold, then the mobile pattern should be the movement 
characteristics of this group. 

IV. The Experimental Results and Analysis 

We filter out the users whose records are more than 300 every day and analyzed their 7 days ' 
trajectories. These people account for more than forty percent of the total users. So the frequent 
patterns and the accuracy of the next location prediction can be found out. 
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the user's location can be predicted. Then, we obtain group's frequent mobility patterns from the 
individual user. By analyzing the corresponding characteristic group's regularity of spatial and time 
can be found. Our work can help operators and ISPs support the location-based services, path 
planning and forecasting, etc. 
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