

Software Adaptive Mechanism Based on Software Architecture in
Software Running Time

Haiyun XIANG1, a, Xiao FU2, Xu LI3

1Modern Educational Technology Center, Southwest Petroleum University,
Si Chuan, ChengDu, China

2College of Computer Science , Southwest Petroleum University,
Si Chuan, ChengDu, China

3Modern Educational Technology Center, Southwest Petroleum University,
Si Chuan, ChengDu, China

aemail: l xianghaiyun_xa@163.com

Keywords: Bigraph; Response System; Adaptive Software; Software Architecture; Formal Methods

Abstract. In the Internet environment, software gradually moves from closed, static and
controllable status towards open, dynamic and unpredictable state. How to propose suitable
software theory for such adaptive software has become the challenging issue facing the computer
science and technology. Applicable formal theoretical basis is one of signs that software technology
achieves maturity, while support for protocol, analysis and verification of adaptive software
architecture is inadequate in existing mobile and concurrent theories. Although the software
architecture technology has now entered into the golden era of development, there are still many
issues to be resolved, one of which is the need for effective mechanism to describe, analyze and
verify software architecture. Bigraph puts emphasis on two factors of calculated position and
connection on the basis of the existing theories, and a relatively complete and extensible theoretical
framework is established. Nowadays, bigraph theory has now begun to be applied, and studies are
gradually carried out on extension and shift of bigraph theory basis, description of concurrency
theory, bigraph logic, modeling of pervasive computing system, and BPL programming language of
bigraph. Hence, bigraph theory can provide a solid foundation for the formal methods of adaptive
software architecture.

Introduction

In recent years, with the osmotic expansion of Internet to every corner of society, and the rapid
development of the computing models typically represented by pervasive computing, grid
computing and network configuration software and so on, the computing environment facing
software system becomes open, pluralistic and variable. To adapt to changes in the network,
equipment, resources and in users' needs in run-time computing environment, people have a
growing demand for adaptive software. Adaptive software usually includes the software
environment itself and the external environment, able to adapt to changes in needs and the
environment in run time by adjusting its structure or behavior. At the same time, the complexity of
the adaptive software also brings increasing challenges: how to understand, describe and model
such applications? What kind of theory suitable for analysis and verification of the nature of such
evolutionary systems? Which elements need to be extended for existing theories to support the
development of such complex systems? Etc.

Bigraph Model of Adaptive Software Architecture

Combined with our research work, this section uses bigraph theory and existing research results
to explore the formalization of adaptive software architecture. Formalization of dynamic
architecture should include structure, behavior and change. Thus, formal methods of adaptive
software architecture should cover change in environment, structure, behavior and the relationship

4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015)

© 2015. The authors - Published by Atlantis Press 1439

among them, thus bigraph needs to be used to describe external environment and the architecture
itself, of which the architecture also includes the structure and behavior.

Structure
Next, description is made by the case of three-tier Client-Server architecture style. A network

information service system is considered and the user can send service requests to the distributed
server via Core. In a dynamic network environment, the number of client and server is constantly
changing. For example, users can join or leave, and the server can be disconnected from the Core in
the absence of the requested services. Thus, such architecture can be adjusted adaptively according
to the requesting number of the users. Figure 1 shows a specific operation of such architecture style.

Client

Core

Server

RPC
Legend

Fig.1. Bigraph description of living example of three-tier Client-Server style
Components and connectors of the example include：Client{port request}，Server{port

reply}，RPC{role caller, callee}，Core{port ,in out
 

}.
We regard specific architecture as a bigraph, and changing operations of the architecture include

adding, deleting and replacing members or linkers, and configuring the ports and the connectivity of
roles and so on. We can modify bigraph to achieve operations of these architectures. Among them,
A represents architecture; U and V are the items in A; P represents members or linkers; p represents
the port and r is role.

定 Definition 1 (substitution) assuming U, V and F are elements of bigraph, and means any
V arisen in F replaced by U.

Add(P, U(V), A)= // Add P to U
Remove(P, A)= //Remove P in A
Replace(P, P, A) = //Replace P with P in A
Connect(p, r, A) = / Connect p and r
Disconnect(p, r, A) = //Disconnect p and r
Rely(t, t’, A) = /Rely t and t '
Disrely(t, t’, A) = //Disrely t and t '
For example, a Client is added in this case and we can describe through operations in the

following sequence:
Add a Client {
Add(Clientrequest, S)
Add(RPCcaller,callee, S)
Connect(request, caller, S)
Connect(in, callee, S)
}
In addition, we can use reaction rules in BRS to represent structural changes, so as to visually

represent the effect of architecture operations. For example, we use reaction rules of Figure 2 to
show the addition of a Client.

in


out


in


out


Fig.2. Reaction rule after addition of a Client
Behavior
In terms of the architecture system, most of the existing formal methods employ  calculation,

1440

graph theory and other theories, and as described above, one of the bigraph goals is to provide
unified framework for mobile and concurrent theory. Thus, these formal methods are described by
bigraph, and that is, these acts protocols are directly converted to bigraph models.

For changes in components or linkers behavior, we can conduct representation through join, quit,
activate and deactivate operations in dynamically bind mechanisms. Thus, the components and
connectors can dynamically join or exit certain behavior specification, and the behavior
specification can be placed in the active or inactive state to exhibit different behaviors in a changing
environment. Status and operations of behavior specification in dynamic binding mechanism are
shown in Figure 3.

Fig.3. Dynamic binding mechanism

For example, if we have added Authentication component in the Core, then the initial behavior
specification of Core is Ordinarybehavior, and certified behavior specification is Safetybehavior,
specifically described as follows:

Ordinarybehavior = via in receive n; inaction; via out send n;
Safetybehavior = via in receive n; if authentication (n) then {via out send n} else {via in send

FAILURE};
The changes in behavior can be explained by dynamic binding operation, namely

quit(Ordinarybehavior); join(Safetybehavior);

Environment
As introduced in section 2.2, bigraph has universal expressiveness. Therefore, users can define

environment in their own way. For example, nodes in the bigraph may represent positions, entities,
events, etc., and edges can represent connections, relationships, trigger conditions and so on. We
may also introduce environmental information for the example: Container is employed to indicate
that the current system may also accept the number of Client (corresponding to the number of
circles inside). Added response rule of a Client is shown in Figure 4.

1441

in


out


in


out


Fig.4. Reaction rule with environmental information

In terms of adaptive software, the environmental changes will have an impact on the architecture,
which leads to changes in the structure and behavior. Changes in the relationship between
environment, structure and behavior can be expressed as:

// Environmental changes cause structural and behavioral changes
EnvChange(StructuralChange | BehavioralChange)+
// In the structural changes, op is the architecture operation
StructuralChange::=op+ | reaction rule
// Behavioral change is operated with dynamic binding
BehaviralChange::=(join(h) | quit(h) | activate(h) | deactivate(h))+

Property Verification

When these changes are implemented in run time, it needs to ensure that these changes do not
undermine the consistency and integrity of the system structure and behavior, which is a necessary
condition for the implementation of adaptive evolution.

Consistency
Definition 2. For behavior expressions of BE1 and BE2, it is called that BE2 simulates behavior

BE1 (abbreviated as), if one of the following conditions are met:
BE1 = BE2
For reaction rule , if , then there exists , thus and .
From Definition 3, we can believe that means that disposing capacity of BE2 is the

same with BE1 or stronger than BE1, which can also be regarded that BE1 is the refinement of
BE2.

Definition 3 For behavioral expression BE1 and BE2, if there must be a reaction sequence tr
formed by response, making , thus it is called that BE1 and BE2 are compatible
(abbreviated as).

Definition 4. For port p and role r, their behavioral expressions are BEp and BEr. If
 is met, it is called that p and r are compatible (abbreviated as).

This definition indicates that their behavior must be compatible, and namely, interaction must be
able to be completed, and the situations similar to deadlock cannot occur.

Integrity
Integrity means that the evolution of the system can not destroy the constraint conditions in

specification of architecture. Integrity also means that the state of the system cannot be lost before
and after evolution, or the system will become "unsafe", even unable to run correctly. Because
evolution is decided by the operation system according to the adaptive rules, thus the integrity needs
to be verified.

For example, for the style of three-tier Client-Server, the number of clients and servers is
unlimited, but there must be a Core. Thus, this constraint condition in three Client-Server style can
be expressed as A = ◇Core with BiLog. As another example, Authentication component is added
in order to provide security mechanism, but it needs to be ensured that Authentication component is
embedded into the Core. This constraint can be expressed as A=Authentication◦Core with BiLog.

1442

Summary and Further Work

Currently, there are still some issues to be resolved: supervising method of contextual
information: the existing system has increasingly requirements for continuous operation, and often
requires making respond to changing resources and internal state, thus contextual information needs
to be increased to describe conditions causing this change. Hence, to study how to specify
contextual information and what methods to guide such a specification is required; adaptive system
architecture description language: the existing ADL lacks description of the environment, and its
theoretical foundation is also insufficient to verify evolutionary properties of adaptive software. We
want to design adaptive software-oriented ADL using bigraph theory; supporting of auxiliary means:
Like other formal methods, design, analysis and verification of architecture require large amounts
of auxiliary means to support such as: design tools, inspection tools and code generation tools and
so on.

Reference

[1] Time-of-Arrival for Wireless Wearable Sensors in Multipath Environment, IEEE Sensor Journal,
14(11), 3996-4006, Nov. 2014

[2] Lv, Zhihan, Liangbing Feng, Haibo Li, and Shengzhong Feng. "Hand-free motion interaction on
Google Glass." In SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications, p. 21.
ACM, 2014.

[3] Zhong, Chen, Stefan Müller Arisona, Xianfeng Huang, Michael Batty, and Gerhard Schmitt.
"Detecting the dynamics of urban structure through spatial network analysis." International Journal
of Geographical Information Science 28, no. 11 (2014): 2178-2199.

[4] Li, Wubin, Johan Tordsson, and Erik Elmroth. "An aspect-oriented approach to
consistency-preserving caching and compression of web service response messages." In Web
Services (ICWS), 2010 IEEE International Conference on, pp. 526-533. IEEE, 2010.

[5] Y. Geng, J. He, K. Pahlavan, Modeling the Effect of Human Body on TOA Based Indoor
Human Tracking[J], International Journal of Wireless Information Networks 20(4), 306-317

1443

