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Abstract. In this paper we propose one method for mechanical vibration signal analysis. The given 
mechanical vibration signal is firstly decomposed into several intrinsic mode functions (IMFs) by 
the empirical mode decomposition (EMD) method. The Hilbert transform of each IMF, calculated 
by a recently developed fast algorithm, is then implemented and the analytical signal corresponding 
to each IMF is obtained. After writing the analytical signal in polar coordinates, we do the 
refinement Fourier spectrum analysis for the phase function of every analytical signal. By 
comparing the behavior of these analytical signals, which correspond to different IMFs, in the 
frequency domain with the characteristic frequency of the mechanical system, we distinguish the 
IMFs which contain the effective information from the IMFs which consist of noise in the original 
signal. Numerical results show that the combination of the Hilbert transform and the Fourier 
analysis works well for practical signals. 

Introduction 
Since the mechanical systems such as the industry manufacture and the transportation tools play 

more and more important role in the world, the study of vibration signal generated by mechanical 
system is very important. The analysis of mechanical vibration signal has a lot of applications in 
different fields, for example, the fault diagnosis for mechanical systems including machines or 
some components of machines, the vibration monitoring and control, the production quality control, 
and the noise source location and noise cancellation. 

Generally speaking, the mechanical vibration signal analysis consists of the extraction of 
information from measured signal patterns. Traditional approach to investigation of mechanical 
vibration signal can include a spectral analysis based on the Fast Fourier Transform (FFT) [1] and a 
time-frequency distribution analysis based on the wavelet transform [2]. The classical spectrum 
analysis method based on FFT has the advantage of high speed but suffers from unsatisfactory 
understanding of the underlying mechanical system, especially in processing the time-varying 
vibration signals, such as weak signal submerged by the side lobe of strong signal, low-frequency 
resolution, and signals corrupted by strong noise. The time-frequency distribution analysis method 
based on wavelet transform can decompose any signal into a linear combination of a set of basic 
functions which are dilations and translations of a given mother wavelet. If the mother wavelet has 
some good properties such as compact support, high vanishing moments and so on, then this 
decomposition of the signal will present a reasonable time-frequency distribution, from which we 
can find out the signal's behavior in different frequency bands and at different time durations. 
However, every time when we try to obtain the time-frequency distribution based on the wavelet 
transform, we need to choose one suitable mother wavelet, which is, in some sense, empirical.  

Currently, the application of Hilbert transform to mechanical vibration signal analysis attracted 
considerable attention, especially after the advent of the Hilbert-Huang transform, which consists of 
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the EMD method and the Hilbert spectrum analysis [3]. For example, some authors combined the 
EMD method and the wavelet transform to present a fault diagnosis for wind turbine gear box [4]. 
For more information of the use of Hilbert transform in mechanical vibration signal analysis, please 
refer to [5]. The success of the Hilbert-Huang transform lies in two facts. The first fact is that, by 
using the EMD method, it can decompose any signal into a sum of IMFs adaptively and quickly. 
The second fact is that it can present a global Hilbert spectrum analysis, from which we can easily 
find out the instantaneous frequency of the analyzed signal. However, there is no need to implement 
the Hilbert spectrum analysis in mechanical vibration analysis because the main advantage of the 
processing of mechanical vibration signal is that we actually know some information of the 
analyzed signal before we analyze it, especially in the frequency domain. For example, when we do 
fault diagnosis for gear box, we do have some priori knowledge about the behavior in the frequency 
domain of the signal generated by the defect gear box. Keeping this in mind, we can only use the 
EMD part of the Hilbert-Huang transform to decompose the signal into several IMFs. These IMFs 
may contain the noise, the characteristic information of the mechanical system and some other 
information. The next step is to find out the IMFs which contain the effective information and the 
IMFs which contain the noise information. For this purpose, we calculate the Hilbert transform of 
each IMF, from which we obtain the analytic signal corresponding to each IMF. Thus, we can get 
the instantaneous amplitude function and instantaneous phase function with respect to each IMF. 
After applying the refinement Fourier spectrum analysis for all these phase functions and 
comparing them with the characteristic frequency of the underlying mechanical system, we can 
extract the informative IMFs from the given signal.  

This paper is organized as follows. Section 2 describes the algorithms, including the EMD 
method, the calculation of the Hilbert transform, and the refinement Fourier spectrum analysis. 
Section 3 presents several numerical results. The conclusion will be drawn in Section 4. 

Algorithm Description 
In this section we will describe our algorithm which consists of three steps. The first step is to 

decompose the given mechanical vibration signal into several IMFs by using the EMD method. The 
second step is to implement the Hilbert transform on these IMFs so that we get the corresponding 
analytic signal, from which the phase functions are obtained. Using the refinement Fourier spectrum 
analysis, the third step is to find out the effective IMFs according to the characteristic frequency of 
the mechanical system. 

The EMD method was proposed by Huang et al. [3] in 1998. It is a sifting process based on the 
local oscillation of the signal. The main advantage of this method is that it does not need to pick up 
any basis functions, which is necessary by the conventional method such as Fourier method and 
wavelet transform method. This advantage makes the EMD method beyond the choice of different 
basis functions, which depends on different signals to be dealt with. By this method, the signal will 
be decomposed into a finite sum of IMFs and a residue, where the IMFs should satisfy: (i). The 
number of the extrema and the number of the zero crossings are equal or differ at most by one; (ii). 
At any point, the mean value of the envelopes defined by the local extrema is zero. The detailed 
algorithm of EMD method can be found in [3]. From the view of mathematics, we can say that the 
IMFs are adaptive basis functions for some function space. Thus, the EMD method actually 
presents an adaptive function decomposition method algorithmically. 

After the sifting process, the original signal will be decomposed into several IMFs. The next 
step is to find out the IMFs which contain the effective information and the IMFs which contain the 
noise information. Generally this is not an easy task. However, the main advantage of the 
mechanical vibration signal analysis is that we have some priori knowledge about the exact 
characteristic information, in the frequency domain, of the given mechanical vibration signal. Thus, 
the Fourier spectrum analysis for these IMFs will be applied. However, before this procedure, we 
will try to “separate" the amplitude part and phase part of these IMFs to get a more meaningful 
Fourier spectrum analysis. For this purpose, we calculate the Hilbert transform of these IMFs in 
next step. 
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In [6], the authors developed a fast algorithm for computing the Hilbert transform of a function 
from a data set consisting of n function values and proved that the complexity of the proposed 
algorithm is O(nlog n). The basic idea of that algorithm is to use the fact that the Hilbert transform 
of B-splines keeps the same recurrence relation as that of B-splines themselves, which was 
observed in [7] and generalized to multivariate case in [10]. Thus we call this method by the 
B-spline method for computing the Hilbert transform. Both theoretical proof and numerical results 
show that the B-spline method has a high computational speed and a low computational error. 
Therefore, we will use the B-spline method to compute the Hilbert transform of the IMFs in this 
paper. For the convenience of the reader, let us review the central idea of the B-spline method for 
computing the Hilbert transform. 

Let k N∈ , and : { : }j jτΤ = ∈Ζ  be a biinfinite sequence of strictly-increasing real numbers such 
that ±∞=±∞→ jj τlim .  For Ζ∈j , the j -th B-spline of order k for the knot sequenceΤ , denoted 
by kjB , , is defined at Rt∈ as  

,)](,...,)[(:)( 1
,

−
+++ −⋅−= k

kjjjkjkj ttB tttt                                        (1) 
where fkjj ],...,[ +ττ  denotes the k -th divided difference of a function f at knots 

}:{ 1+∈ kj Zjτ  and the dot “ ⋅ ” indicates the variable in which the divided difference is computed. 

For every biinfinite vector Z
j RZjcc ∈∈= ):( , we define a spline function S of degree k-1 with 

knots on Τ  at Rt∈  as 
∑
∈

=
Zj

kjj tBctS ).()( ,                                                        (2) 

For a given data set, if we choose reasonable jc 's according to the data set, then (2) can be 
interpreted as a B-spline approximation S to a function f underlying the given data set. Thus, by the 
linear property of the Hilbert transform, at almost everywhere Rt∈  we have that 

∑
∈

=
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kjj tHBctHS ).)(())(( ,                                                  (3) 

For simplicity we set kjkj HBH ,, = . Thus, the calculation of HS  reduces to computing the ,j kH , 
which can be implemented efficiently because for Τ∈ \Rt , ,j kH 's satisfy the following recurrence 
relation 
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The initial function 1,jH  is given at },{\ 1+∈ jjRt tt by 
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Using this fact, the Hilbert transform of a given function can be computed efficiently. In 
practical calculation, we assume that the values of the function f at a sequence of points }:{ Zjt j ∈  
are given. We call }:{ Zjt j ∈  the sample points and )}({ jtf  the samples. We first choose the 
order k of the B-splines and the knots of the B-splines. Then we choose reasonable jc 's so that S is a 
good approximation to the underlying function f of the given data. For example, in the case that 

1j jh t t −= − is a constant, if we choose k=3 then )(
2
1

1 jjj tt += −t and  

( / 2) / 8 5 ( 3 / 2) / 4 ( 5 / 2) / 8j j j jc f h f h f hτ τ τ= − + + + − +                          (7) 

are good choices. Thus, (3) can be used to approximate the Hilbert transform of a given data set. 
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For more details, please refer to [6]. 
After the calculation of the Hilbert transform of f we can get the corresponding analytic 

signal iHffAf += . If we write this in polar coordinates, then we have ( )( ) ( ) i tAf t t e θρ= , where 
22 )()()( tHftft +=ρ  and 

)(
)(arctan)(

tf
tHft =θ  are instantaneous amplitude function and 

instantaneous phase function of f respectively. The next step is to implement the Fourier analysis to 
the function ( )i te θ , which contains the frequency information of each IMF. 

When the analytic signal corresponding to each IMF is obtained, we can implement the Fourier 
analysis to the function ( )i te θ . Instead of using the general fast Fourier transform (FFT), we choose a 
similar method with which we can present a more refined Fourier spectrum analysis. To this end, 
we introduce the discrete time Fourier transform (DTFT). For a continuous time signal x, its Fourier 
transform is defined as: 

.)()( 2∫ −
∧

=
R

ti dtetxx πxx                                                     (8) 

Consider a δ sampling sequence 
],)()[()( ∑

Ζ∈

−=
n

s nTttxtx δ                                                  (9) 

where ( )t nTδ −  is a Dirac function, T is the sample period and Z is the integer set. For an 
arbitrary continuous function y, we have 

),()()( nTydtnTtty
R

=−∫ d                                                (10) 

thus the Fourier transform of sx is: 
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This is the DTFT of the signal x. For a discrete time signal x(n), { }: 0,1,..., 1nn Z N∈ = − , whose 
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Notice that 
∧

x  is a continuous function of frequency ξ , we can get the continuous spectrum of 
signal s, thus, we can obtain high resolution spectrum in spite of the limitation of sampling point 
numbers. Thus we call this by the refinement Fourier transforms.  

Using equation (12), we can get the refinement Fourier spectrum for the function ( )i te θ , which 
obtained from the analytic signal corresponding to each IMF. Comparing the refinement Fourier 
spectrum with the characteristic frequency information of the mechanical vibration signal, it is easy 
to find out which analytic signal and the associated IMF contains the characteristic frequency 
information of underlying mechanical system. 

Numerical results and discussion 

In this section we will analyze a practical mechanical signal to illustrate the effectiveness of the 
proposed algorithm. In Figure 1 we present the practical signal, which consists of the effective 
information in three different frequency bands, the complex background noise and the biological 
disturbing noise. Figure 2 and Figure 3 present the first to tenth IMFs, decomposed by the EMD 
method, of the practical signal respectively. From these IMFs, we can also see that the frequency 
band of the IMFs decreases along with the sifting process. 
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Fig.1. The practical signal        Fig. 2 The first to fifth IMFs      Fig. 3 The sixth to tenth IMFs 

 
The Hilbert transform of the third IMF of the practical signal is showed at Figure 4. Figure 5 

gives the refinement Fourier spectrum of the third IMF of the practical signal, from which we can 
see obviously the frequency amplitude is concentrated around 2438Hz, which is in the high 
frequency interval from 1000Hz to 10000Hz.  

              
   Fig. 4 The Hilbert transform of the third IMF        Fig. 5 The refinement Fourier spectrum of the  

                                              instantaneous phase corresponding to the third IMF 
 

Similarly, the Hilbert transform of the fifth IMF of the practical signal is showed at Figure 6. In 
Figure 7, we give the refinement Fourier spectrum of the instantaneous phase corresponding to the 
fifth IMF of the practical signal, from which we can see again the fifth IMF contains the main 
energy of the practical signal around the frequency 340Hz, which is in the middle frequency 
interval from 100Hz to 1000Hz.  

              
      Fig. 6 The Hilbert transform of the fifth IMF     Fig. 7 The refinement Fourier spectrum of the 

instantaneous phase corresponding to the fifth IMF 
Finally, the Hilbert transform of the seventh IMF of the practical signal is shown at Figure 8. In 

Figure 9, we give the refinement Fourier spectrum of the instantaneous phase corresponding to the 
seventh IMF of the practical signal, from which we can see the seventh IMF contains the main 
energy of the practical signal around the frequency 92Hz, which is in the low frequency interval 
from 10Hz to 100Hz. 
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Fig. 8 The Hilbert transform of the seventh IMF   Fig. 9 The refinement Fourier spectrum of the  

instantaneous phase corresponding to the seventh IMF 
From the numerical results shown above, we can see the proposed method works well for 

practical signals. 

Conclusion 
A combination of the EMD method and the refinement Fourier spectrum analysis of the 

instantaneous phase function presents a reasonable analysis for mechanical vibration signals. The 
calculation of the Hilbert transform of the extracted IMFs and the refinement Fourier spectrum 
analysis of corresponding instantaneous phase function help us to understand the underlying 
mechanical vibration system. This understanding can help us to do further analysis for the 
mechanical vibration signals. Numerical results confirm the effectiveness of the proposed method in 
this paper. 
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