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Abstract. This paper presents a terrain rendering technique for large, textured terrain, which uses 
Parallel-based error metric. In a preprocess, the domain was first tiled and computed into a nested 
geometric space error map based on geographic theory, taking the advantage to save displaying 
memory with terrain map. In order to obtain the seamless connection, the edge errors of two 
connecting tiles are consistent with each other. At run time, screen space error is projected from 
geometric error, and compare with error threshold according to view-point, to select terrain grid 
points by GPU. At last, triangle strip is constructed according to RQT method. The method 
processes the error metric and triangulation by GPU, to improve the rendering efficiency of image 
hardware, and save the running time of CPU. 

Introduction 
In this paper a new optimal design of soccer robot control system which is based on mechanical 

analyses and calculations on the pressure and transmutation states of chip kick mechanics, this new 
control system with high precision for speed control and high dynamic quality. 

Large scale terrain rendering at real-time frame rates is an important area of computer graphics, 
which is used for flight simulators, computer games, virtual reality and visualization. Restricted by 
rendering ability of image hardware, the main target of early algorithms is to simplify the terrain 
description and reduce rendering triangles. Such as continuous levels of detail(CLOD) rendering of 
height fields[1,2], real-time optimal adaptive meshes(ROAM) algorithm[3], view dependent 
progressive meshes(VDPM) algorithm[4], and so on. For the purpose of real-time rendering, these 
algorithms effectively reduce the number of triangles by using LOD technique. But, the 
disadvantage of these algorithms is to expend large amounts of run-time of CPU. 

Along with the developing of GPU and image hardware, triangle rendering number is not the 
chief bottleneck of modern image system anymore. Many parallel rendering algorithms presented in 
recent years, such as geometrical mipmap(Geomipmap), chunked LOD and geometrical clipmap 
algorithm. These algorithms utilize high-speed catches of displaying hardware, increase rendering 
speed, and save CPU run-time, improve the system performance. 

Up to now, for the latest displaying card, GPU CUDA cores has been 2048 and displaying 
memory has been 4GB too. How to adequately utilize displaying hardware has been an important 
way for terrain rendering. The method in this document is to compute the error metric, LOD 
selection and triangulation by GPU, save the CPU run-time. So that CPU can do it’s obligatory 
work, such as impact detection, game computation, and so on. 

Related Work 
Error Saturation  
An optimal output-sensitive triangulation algorithm is presented in [6] that exploits the strict 

error monotonicity achieved by a technique known as error saturation. This allows for a simple 
top-down vertex selection algorithm which does not have to resolve any restricted quadtree 
dependencies or propagate triangle splits at run-time. This error saturation is performed in the 
preprocess: Each vertex stores the maximum value of all propagated errors and its own computed 
error, and propagates this maximum further along the dependency graph. This preprocess can be 
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implemented by a simple traversal over the grid-digital elevation values. Therefore, a fast top-down 
selection of vertices according to their saturated error metric directly yields an adaptive and 
conforming triangulation of a restricted quadtree, without the need of enforcing any quadtree 
constraints, forced splits or resolving dependency relations.  

Error Metric  
Both simplification of terrain data and LOD technique are based on object space error or screen 

space error.  
In [2] the definition of an efficient view-dependent image-space error metric has been proposed 

by Lindstrom, which determines removal or inclusion of vertices for a given viewpoint. The basic 
idea of this error metric is that triangle pairs can be merged if the change in slope at the removed 
base vertex ν  projected into screen space is smaller than a given thresholdτ . The line segment ε  
between the removed base vertexν and its linear interpolation is perspectively projected onto the 
screen space viewing plane as ρv. If ρv is smaller than the tolerance τ then the vertex v can be 
removed and the corresponding triangle pairs merged. But the metric defined in [2] is hardly 
noticeable in practice. 

Pajarola proposed an accurate object-space geometric error metric computing method with RQT 
In [6]. Error values of vertexes in triangle grid T are propagated and maximized along the 
dependency graph shown in Figure 1. The maximum error ensures that every vertex conform to 
error saturation and obtain accurate object-space geometric error.  

Then, Lindstrom presented an error metric algorithm, which is based on the accurate 
object-space geometric error of [6] and nested sphere hierarchy of [10], to transform the nested 
object-space geometric error into nested screen-space error for terrain simplification. This algorithm 
ensures both object-space geometric errors and screen-space errors are saturated.  

Moreover, Today’s GPUs are able to sustain speeds of hundreds of millions of triangles per 
second. So, terrain rendering algorithms mostly utilizes the performance of GPU. [7, 11] partition 
the terrain into square patches tessellated at different resolutions, [12]  directly loads compressed 
terrain data into graphics memory, and [13] still provides a seamless connecting method between 
patches. Those algorithms use batch technology of CPU and cache of graphics memory, largely 
improve rendering efficiency. But [7] only computes static error, [11] largely simplifies error, and 
[12] even takes the distance to view point for error metric. So, it is still difficulty to take quick, 
Parallel-based, optimized terrain rendering effect. 

GPU-Base Error Metric 
On the basis of paper [8], our method computes saturated error of each vertex in terrain grid 

patch, and compose error map, which is loaded into graphic memory with terrain elevation map. 
Then we project geometric error to view-dependent screen space error of each vertex, and select 
vertexes to compose triangle strip by GPU according to the screen space error. 

Nested Geometric Error And Screen Error 
Nested error means that error increases monotonic. To guarantee this property, we could define 

the geometric error of vertex is the maximum error of all DAG children. Let  
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where iε̂  is the actual (not necessarily nested) geometric error measured by the object space 
metric. And iCj∈  means vertex j  is one of all DAG descendants of vertex i . 

Therefore, it is not sufficient to nest the object space errors alone, but it is necessary to account 
for this spatial relationship between parent and child vertices. Instead, we resort to a more easily 
expressed superset of points to project from, defined by a ball ii PB ⊇  of radius ir  centered on 

ip  (position vector of vertex i ): 
{ }iii rxxB ≤−= p:  
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Where radius ir  of sphere iB is: 
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Then ii PB ⊇  for iCj ∈ , i.e. the ball hierarchy is nested.  
Finally, the maximum projected error was defined as 
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Because ji εε ≥ , ji BB ⊇ , and ρ  is monotonic, so we have ji ρρ ≥  for iCj ∈ . 
Consequently, if j  is active, then so is its parent i , which is what we set out to show. 

Geometric Error Metric 
Longest edge bisection is shown in Fig.1. Where v  is the split vertex, and },{ rl vve =  is the 

split edge. The two triangles that share split edge are called the diamond },{ tb ttT = . 

 
Fig.1. Longest edge bisection 

So, we define the vertical error between vertex i  and it’s triangle t  as 
),(ˆ

, iititi yxzz −=δ  
where iz  is the elevation of vertex i , and ),( iit yxz  is the elevation of triangle t  at the point 

),( ii yx  in the domain. So, the incremental error can then be written as 
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The maximum error can similarly be written by considering i  and all of its descendants: 
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where Di,j is the set of all descendants of i reached via recursive bisection of triangle t. By the 
equation (2), the nested geometric error of each vertex in terrain grid can be computed during 
pre-processing. And the nested screen error also can be projected by the way of bounding sphere. 

Screen Error Metric 
Given an object space measure of error ε , a view-dependent algorithm projects ε  onto the 

screen, resulting in a screen space error )(ερ . For our projecting method, only the Euclidean 
distance is taken into account, which is between the viewpoint e  and the vertex position p . 

pe −=d  
Then the relevant error projection metric of this form can be written as 

 ( )
d
ελελερ =

−
=

pε
εp,,               (3) 

i.e. the projected error decreases with distance from the viewpoint. λ  is a performance 
parameter, it is  

2/tan2 ϕ
λ w
=  

where w  is the number of pixels along the field of view ϕ . Equation (3) is in actuality a 
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projection onto a sphere and not a plane, so a more appropriate choice is ϕλ /w= . We then 
compare ρ  against a user-specified screen space error tolerance τ . 

In our ball hierarchy refinement procedure, we need to find the maximum projection ( )e,, Beρ  
over a set of points B (Section 3.1). For Equation (3) the maximum projection occurs where 

ex −=d  is minimized. For viewpoints inside B, this term is zero, and we activate the vertex. If 
B∉e , then the minimum is rd − , and our maximum screen space error becomes 
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Comparing ρ  against τ  and rearranging and squaring some terms (to avoid costly square 
roots), we obtain 
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Where 
τ
λ

=v  is constant during each refinement. In a strict mathematical sense, the derivation 

of equation (5) is valid only if our assumption iB∈e  holds. However, if we use the convention that 
)(iactiveBe ⇔∈  or )(iactiverd ii ⇔≤ , then Equation (5) can correctly be used for all viewpoints. 

The above expression involves only six additions and five multiplications, and corresponds to 
parallel computing requires. Therefore, error metric and active vertexes can be computed by GPU. 

Parallel-based Error Metric  
For massive terrain data, we partition the terrain mesh into equal square tiles (size of 257×257), 

which elevation data are saved by terms of array. Then we compute the nested geometric error of 
each vertex of every tile according to equation (2) during pre-processing, and saved by array too. 
Moreover, in order to project nested screen space error, we compute a nested bounding sphere 
radius array for all tiles. The process is shown in Fig.2. 

 
Fig.2. Longest edge bisection 

During terrain rendering, the elevation data and error data of required terrain tiles are loaded into 
graphic memory on the base of view point. Then we can compare projected screen error against 
tolerance to select vertexes by GPU. 

Therefore, we compare one by one to get the LOD active vertexes according to the view point, 
and construct the triangle strip by means of RQT to render quickly. 

Seamless Connection of Tiles  
The main challenge for tiled terrain rendering method is to seamlessly stitch block boundaries. 

There are several ways to fix the cracks between tiles: to add flanges around each block [7], to 
render zero-area triangles along the tile boundaries [12], and [16] is to stitch adjacent patches by 
four special strips.  

In this paper, we uniform the geometric errors of vertexes, which are on the adjacent edges (E) of 
two adjacent tiles (A and B). And the consistent error is set to be the maximum one of the two tiles: 

EvBvAvv ∈= },{max ,, εεε  
Moreover, for the require of monotonicity, edge error should propagate to its parent too. 
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Therefore, there are the same geometric error, same bounding sphere radius and same distance to 
view point, of the same edge vertex of two adjacent tiles. So, there are the same projected screen 
space errors by means of equation ( )e,, Beρ . Then, the same vertex of two adjacent tiles could be 
selected and rendered at the same time, to ensure the connection between tiles is seamless. 
Moreover, it doesn’t require extra run-time work, which only spends some additional computing to 
get the same edge error during pre-processing. 

Test results 
We used a 2.6GHz Pentium Dual-Core E5300 PC, with 2G DDR2 of RAM, GeForce 9800GT 

graphics with 1G of graphics RAM, and SATA 250G disk.  For all results, a data set over the Puget 
Sound area in Washington was used, which is made up of 16384×16384 vertices at 10 meter 
horizontal and 0.1 meter vertical resolution, and the texture data used pseudo-color.  

 
Fig.3. Terrain rendering by our method 

Our application is implemented by VC and OpenGL, and the window size is in all cases 1024×
768 pixels with 1 pixel screen space error thresholds. Application image is as Fig.3, and the result of 
1000 frames is shown in Fig.4. 

 

Fig.4. Examination result 
The frame rates are between 60 to 120 fps, and the number of triangles is 150 thousands in 

average. Results from our analyses suggest that our method largely reduce the triangles number, and 
frame rates reached the real-time requirement of our travels. 

Conclusion 
In summary, a terrain rendering technique for large, textured terrain is presented here, which uses 

Parallel-based error metric. By this method, the works of error metric computing is transferred from 
CPU to GPU without any rendering quantity reduction, which sufficiently utilizes the computing 
ability of GPU while leaving the CPU free to work on other important tasks. In order to obtain the 
seamless connection, we also keep the error consistency of two connecting tiles. The result meets 
our rendering requirement. But, our method increases about 10% sizes of out-of-core files, which 
restricts the rendering efficiency in a certain extent. For the future, a method to improve loading 
speed of terrain files is necessary for the purpose of increase farther rendering speed. 

   
    (a) Puget Sound area (b) California Mountains (c)Hawaii island 
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