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Abstract. Machining learning techniques have achieved great success in anti-spam area. But 
because of the limitations of these techniques, classifiers derived from them often get attacked by 
spam senders thus posing a threat to the whole Spam filtering system. This article briefly describes 
the type of attacks to classifiers and then simulates an attack on a public Chinese spam corpus to 
analyze the adversarial impact of several major classifiers.  

Introduction  

E-mail has been widely used since it appeared in the 1970s.  According to the report of 
NetEase Company of China in 2014, each netizen owns 3.8 e-mail boxes on average, 87% of which 
use e-mails every day. However Spam Research Center (ASRC) points out that over 70 % mails are 
spams in Security Trends Report which also states that 3/4 of spams are from China. Spams not 
only consume network resources, reduce network operational efficiency, causing a great threat to 
network security, but also invade privacy which results in leakage of personal information. 

Machine learning algorithms have been successfully applied to anti-spam filter system [1,2,3], 
and they have become the target of deliberate obstruction from spam senders in mainly 2 aspects, 
generating new spam variants and attacking classifier learning. The most common spam variant is 
adding spam information including texts, pdf documents, images with advertising message [4], html 
documents into attachments in order to escape detection. As for classifier attacking, spam senders 
usually try to change the classification and identification in the training process [5] by modifying 
the training data on purpose. Machine learning techniques assume that the training corpus can be a 
good representative of the real data and ignore the artificial data modification, classifier attacks can 
often reduce the accuracy of the classifier and undermine its credibility [6]. Thus classifiers’ 
adversarial impact under malicious attacks is the research priority.  

This article firstly introduces the related work and the types of classifier attacks especially in 
spam filter area, then describes several machining learning classifiers widely used in anti-spam area 
briefly and at last simulates an attack what we call Confusion Attack on a public Chinese spam 
corpus to analyze the adversarial impact of these classifiers.  

Related Work 

Adversarial classification is proposed for the first time by Dalvi, et al [6] in 2004 who view the 
classification as a game between the classifier and its adversary and formalize the problem into a 
frame and an algorithm which acquires a more optimal classifier. Considering that the attacker may 
not have perfect knowledge of the classifier, Lowd, et al [7] introduce a theoretical framework , 
adversarial classifier reverse engineering (ACRE) , for studying adversary and classifier which 
determines whether an adversary can efficiently learn enough about a classifier to minimize the cost 
of defeating it. Barren, et al [8] present a taxonomy of different types of attacks on machine 
learning techniques and a variety of defenses against those attacks. Wei Liu, et al [9] model the 
interaction between a data miner and an adversary as a Stackelberg game with convex loss 
functions ,then solve the Nash equilibrium problem. Battista Biggio, et al [10] use multiple 
classifier to resist adversarial attacks. Wei Deng, et al used the idea of injecting malicious 
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information to corpus raised by Battista Biggio [11] to perform good word attacks in Chinese spam 
corpus and receive good effects. Xiaohui Pei, et al compare the performance of linear classifiers on 
Chinese spam corpus under good word attacks, and prove that SVM performs better.  

Attacks to Spam Classifier 

The attacks to classifiers are defined in 3 aspects: influence, specificity and security violation 
[8].In terms of influence, attacks can be divided into Causative Attacks and Exploratory Attacks. 
The difference between which is Causative Attacks have some measure of control over the training 
of the learner while Exploratory Attacks have not and  can only use other techniques such as 
offline analysis to discover information. As to specificity, attacks are classified into Targeted 
Attacks and Indiscriminate Attacks. Targeted Attacks focus on a particular or a small set of points. 
However Indiscriminate Attacks have a flexible goal of involving a general class of points, for 
example, “any false negative”. The third is security violation which can be separated to Integrity 
Attacks and Availability Attacks. The main issue of Integrity Attacks is increasing false negatives, 
but Availability Attacks have a much more boarder influence of resulting in so many classification 
errors including false negatives and false positives. 

The attacks to spam classifier are mainly about the attacks for spam recognition. The spam 
senders intend to disturb the identification and investigation of the receiving end by sending some 
confusion or poison information. Among all types of attacks, a kind of Exploratory Attacks named 
Evasion Attack [12] is the most commonly used. In Evasion Attack, spam senders disguise spam 
content by removing a portion of spam words or blurring these words, and adding some legitimate 
content, so that a spam looks more like a legitimate message and then escapes the detection of 
classifiers, releases successfully. Evasion Attack can degrade the accuracy of spam filters and let a 
camouflage spam escape filter detection. Dictionary Attack [13], Frequent Word Attack [13], 
Frequency Radio Attack [13], Weak Statistical [13], Sparse Data Attack, Obfuscation are frequently 
seen in Evasion Attack. 

In Causative Attacks for spam classification, Poison Attack [14] is most frequently used by 
attackers. Spam senders add samples doped with misleading information to training set to mislead 
the learning procedure of classifiers. This will lead to a result that classifiers generate much more 
false positives in test set [15]. 

Furthermore, some other ways like adding junk words into legitimate e-mails with the aim to 
reduce the junk attributes of these words, or alter mails with spam titles and legitimate body to 
reduce the junk attributes of spam titles in classifiers are also popular. 

Introduction to Main Classifiers in Spam filter  

Support Vector Machine (SVM) 
Support Vector Machine method is widely used in data mining, pattern recognition and some 

other areas since it was firstly proposed in 1995 [16]. The basic idea of SVM is that feature vectors 
will be mapped to a high-dimensional space, in which the data can be separated properly by a plane 
with a maximum interval. As illustrated in Fig.1, in a two-dimensional plane, point set T ൌ
ሼሺݔଵ, ,ଵሻݕ ሺݔଶ, …ଶሻݕ ሺݔ௡, ௜ݔ ௡ሻሽ whereݕ ∈ ܴ௡ and y௜ ∈ ሼ൅1,െ1ሽ denoted in the map by ○ and× 
respectively. The straight line in Figure 1 represents the maximum interval plane which can be 
formalized as a function.   
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In the Clean Data stage, we extract the body of a mail for the reason that it is rich in 
information.  

According to the Chinese language features, there is no space to separate words. We perform 
word segmentation using ICTCLAS segmentation system developed by ICT.  It is also necessary 
to remove stop words which occur frequently but meaningless to get corpus with analyzable value, 
namely Word set in Fig. 4.  

Feature Extraction and Presentation 
Vector Space Model (VSM) [22] is widely used in text classification and information retrieval 

area and performs well. In this paper we use VSM to represent each mail, a mail can be expressed 
as a feature vector X ൌ ሺݔଵ, ,ଶݔ … ,  ୧ indicates the weight of ith word, n represents theݔ ௡ሻ whereݔ
total number of feature words, in other words, feature dimension.  

Feature words are selected by feature selector as illustrated in Figure 4. Commonly used 
Chinese text feature selection methods are chi-square statistic (CHI) [23], information gain (IG) [23] 
and DF [23]. According to the result of Siyao Han et al [24] on anti-spam study, we use CHI to 
choose feature words and the weight of each feature word is its TF-IDF value. 

We perform data preprocessing and feature representation procedure on Balance Dataset A, 
Balance Confusion Dataset B and Imbalanced Confusion Dataset C, then transform each mail into a 
feature vector. 

Assessment criteria  
Precise and Recall are 2 important indicators to evaluate a classifier. Precise represents the 

degree that a classifier classifies objects correctly, for example in this article, how many mails are 
really spams among the spams assigned by the classifier. Recall means the classification integrity of 
a classifier, for example, how many spams are assigned to spam in all spams. Sometimes there may 
be contradictions between Precise and Recall, so a new evaluation standard F-Measure which 
combines Precise and Recall together is applied. This article takes Precise, Recall and F-Measure 
(F1) as the assessment criteria. The calculation methods are shown in Table 1. 

 
Table 1 Calculation methods table 

 Ham Spam 
Judged as Ham f00 f01 
Judged as Spam f10 f11 

Precise =	
୤ଵଵ

୤ଵ଴ା୤ଵଵ
   Recall =	

୤ଵଵ

୤଴ଵା୤ଵଵ
   F1 =	

ଶ∗୔୰ୣୡ୧ୱୣ∗ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱୣାୖୣୡୟ୪୪
 

 
Experiment Tools and Parameters of Classifiers 
Weka is a collection of machine learning algorithms for data mining tasks and contains tools for 

data pre-processing, classification, regression, clustering, association rules, and visualization. Our 
experiment is based on Weka.  LibSVM, Naive Bayesian, MLP, AdaBoostM1 in Weka are the 
classifiers we want to analysis. 

For the parameters selection, we use Grid search to find the optimal parameters and use Cross 
Validation to select the suitable models which avoid over-fitting. LibSVM classifier performs better 
with gamma 5, cost 25 and nonlinear kernel RBF. Native Bayesian classifier takes default 
parameters in Weka. AdaBoostM1 classifier is trained with 500 iterations by using weak classifier 
Decision stump. For MLP the learning rate is 0.3 and the momentum is set to 0.2. 

Experiment Results 

On dataset A, B and C we randomly split 80% corpus for training and the remaining 20% for 
testing, 20-200 features with interval of 10, namely 10 different dimensions. All training models are 
trained with 10-fold cross-validation to get the most suitable classifiers. The result is in the 
following. 

The Precision Result 
Fig. 4 shows the precision results on all dataset, balance and imbalance, normal and confusion. 
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used in anti-spam system. According to the experimental results, the imbalance of corpus may 
improve the performance of classifiers under confusion attack. 
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