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Abstract

In this paper we consider an extension of the half-normal distribution based on the distribution of the maximum
of a random sample. It is shown that this distribution belongs to the family of beta generalized half-normal
distributions. Properties of its density are investigated, maximum likelihood estimation is discussed and the
Fisher information matrix is derived. A real data illustration is presented, and comparisons with alternative
extensions of the half-normal distribution reveal good performance of the proposed model.
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1. Introduction

Lehmann (1953) proposes an asymmetric family of distributions with distribution function (d.f.)

FF(z;α) = {F(z)}α , z ∈ R (1.1)

where F is a distribution function and α is a rational number. Clearly, when α is an integer, the
distribution of the maximum of a sample follows. Durrans (1992) extended the definition of (1.1) by
allowing α ∈R+, referring to the resulting distributions as the fractional order statistics. Assuming
F to be absolutely continuous with density f = dF in (1.1), the density of a random variable, Z,
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from such a distribution is given by

ϕF(z;α) = α f (z){F(z)}α−1, α ∈ R+. (1.2)

We use the notation Z ∼ FOF(α).

Remark 1. It follows that function (1.2) is a density function provided z∈R or z∈R+, from which
alternative distributions can be defined with support R or R+.

Durrans (1992) considered the case of (1.2) in which F is the d.f. of the standard normal distri-
bution, Φ, referring to the resulting distribution, FOΦ(α), with density

ϕΦ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R, α ∈ R+, (1.3)

as being the generalized Gaussian distribution. Gupta and Gupta (2008) also considered the
FOΦ(α) distribution in some detail. They referred to the class of distributions with density (1.3) as
the power-normal model.

Lehmann (1953), Durrans (1992) and Gupta and Gupta (2008) can be consulted for the funda-
mental properties of the FOΦ(α) distribution. Pewsey et al. (2012) show that the Fisher information
matrix for the location-scale extension of the power-normal model is nonsingular for α = 1, that is,
the ordinary location-scale normal model.

In Durrans (1992), the generalized Gaussian distribution is also a special case of the so-called
Beta-normal distribution of Eugene et al. (2002). Jones (2004) considered an extension of the con-
struction in Eugene et al. (2002) which includes any distribution function and not just the standard
normal distribution.

On the other hand, the generalized half-normal distribution is introduced in Cooray and Ananda
(2008) as an alternative to the Gamma, Weibull, log-normal and Birnbaum-Saunders distributions
to model positive life time data. We say that X is a random variable with generalized half-normal
(GHN) distribution with scale parameter σ and shape parameter α , if its density function is given
by

h(x;σ ,α) =

√
2
π

(
α

x

)( x
σ

)α

exp
[
−1

2

( x
σ

)2α
]
, x > 0,σ > 0,α > 0.

Denoting X ∼GHN(σ ,α), note that GHN(σ ,α = 1)≡HN(σ), that is, one obtains the half-normal
model with scale parameter σ . This family is extended in Pescim et al. (2010), where a four param-
eter family is generated.

This paper focuses on studying the distribution that is generated when we consider the density
(distribution) function in (1.2) as the density (distribution) function of the half-normal distribution.
The half-normal distribution introduced is called the power half-normal (PHN) distribution. The
PHN family is a subfamily of the distributions considered in Pescim et al. (2010). The distribution
PHN has only two parameters and can be used for fitting positive data from reliability or survival
experiments being thus an alternative to half-normal, gamma and Weibull distributions, among oth-
ers.

The paper is organized as follows. In Sec. 2 we present the power-half-normal distribution. Basic
properties such as quantiles, risk functions, characterizations and moments derivation are discussed.
Sec. 3 deals with inferential aspects such as likelihood function, likelihood equations and Fisher
information matrix. In Sec. 4, we illustrate the importance of the new distribution by applying it
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to three real data sets using maximum likelihood estimation. Results reveal that the proposed PHN
model can outperform competing alternatives previously proposed.

2. Power half-normal distribution

Definition 1. A random variable Z is said to follow a power half-normal distribution with scale
parameter σ and shape parameter α if its probability density function (pdf) is given by:

fZ(z;σ ,α) =
2α

σ
φ

( z
σ

)(
2Φ

( z
σ

)
−1
)α−1

,

where σ > 0, α > 0, z> 0 and φ(·) (Φ(·)) denotes the density (distribution) function for the standard
normal density (distribution) function. We use the notation Z ∼ PHN(σ ,α).

Definition 2. The distribution function for Z ∼ PHN(σ ,α) is given by

FZ(z;σ ,α) =
(

2Φ

( z
σ

)
−1
)α

,

where σ > 0, α > 0, z > 0.

Fig. 1 and 2 depicts graphically the density function for model PHN for some values of the
parameters σ and α , whereas Figure 3 shows plots of the distribution function for some values of
parameters σ and α .
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Fig. 1. Probability density functions of Z for σ = 1 and α = 0.5,0.8,1,1.2,2.
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Fig. 2. Probability density functions of Z for σ = 1 and α = 2,5,10,20,100.
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Fig. 3. Distribution functions of Z for for σ = 1 and α = 0.5,1,1.2,4,10.

2.1. Main properties

In the following, quantiles, hazard and survival functions are derived for model PHN. Thus, letting
Z ∼ PHN(σ ,α), we have
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Q(p) = σΦ
−1

(
1+ p1/α

2

)
, 0 < p < 1,

and

1. f irst quartile = σΦ−1
(

1+41/α

22/α+1

)
2. Median(Z) = σΦ−1

(
1+21/α

21/α+1

)
3. third quartile = σΦ−1

(
3+41/α

22/α+1

)
The corresponding survival and the hazard rate functions are, respectively, given by

S(z) = 1−FZ(z) = 1−
(

2Φ

( z
σ

)
−1
)α

,

and

h(z) =
f (z)
S(z)

=
2α

σ
φ
( z

σ

)(
2Φ
( z

σ

)
−1
)α−1

1−
(
2Φ
( z

σ

)
−1
)α .

Fig. 4 and 5 depicts plots for the survival and hazard rate functions for the half power-normal
distribution. Notice that there are instances that the hazard function is initially decreasing and then
increasing being thus of the bathtub shape.
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Fig. 4. Survival function of Z for σ = 1 and α = 0.5,0.8,1,1.2,2.
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Fig. 5. Hazard rate function of Z for σ = 1 and α = 0.5,0.8,1,1.2,2.

Note that the functions FZ (z;σ ,α), Q(p;σ ,α), s(z;σ ,α) and h(z;σ ,α) only depend on Φ(·).
So, they can be easily calculated.

2.2. Characterizations of PHN distribution

In designing a stochastic model for a particular modeling problem, investigators will be vitally inter-
ested to know if their model fits the requirements of a specific underlying probability distribution.
To this end, the investigator will rely on the characterizations of the selected distribution. Generally
speaking, the problem of characterizing a distribution is an important problem in various fields and
has recently attracted the attention of many researchers. Consequently, various characterizations
results have been reported in the literature. These characterizations have been established in many
different directions. In this Section, we present yet another characterizations of PHN distribution.
These characterizations are based on conditional expectations of a function of the random variable.

Here, we employ a single function ψ of X and state characterization results in terms of ψ (X) .

Proposition 1. Let X : Ω→ (a,b) be a continuous random variable with cd f F . Let ψ (x) be
a differentiable function on (a,b) with limx→b− ψ (x) = 1. Then for δ 6= 1 ,

E [ψ (X) | X ≤ x] = δψ (x) , x ∈ (a,b) , (2.1)

if and only if

ψ (x) = (F (x))
1
δ
−1 , x ∈ (a,b)

Proof. Is straightforward. 2
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A more general form of Eq. (2.1) is given below.

Proposition 2. Let X : Ω→ (a,b) be a continuous random variable with cd f F . Let ψ (x) be
a differentiable function on (a,b) with limx→a+ ψ (x) = δ > 1 and limx→b− ψ (x) = ∞ . Then

E
[
(ψ (X))δ | X ≤ x

]
= δ (ψ (x))δ−1 , x ∈ (a,b) , (2.2)

if and only if

ψ (x) = δ

[
1+(F (x))

1
δ−1

]−1
, x ∈ (a,b) . (2.3)

Proof. From Eq. (2.2), we have

∫ x

a
(ψ (u))δ f (u)du = δ (ψ (x))δ−1 F (x) .

Taking derivatives from both sides of the above equation and rearranging terms, we arrive at

f (x)
F (x)

= (δ −1)
{
−ψ ′ (x)

ψ (x)
+

ψ ′ (x)
ψ (x)−δ

}
.

Integrating both sides of this equation from x to b and using the condition limx→b− ψ (x) = ∞,
we obtain Eq. (2.3).2

Remark 2. (a) Taking, e.g., (a,b) = (0,∞) and ψ (x) =
(
2Φ
( x

σ

)
−1
) α(1−δ )

δ , Proposition 1
gives a characterization of PHN distribution. (b) Taking, e.g., (a,b) = (0,∞) and ψ (x) =

δ

1+(2Φ( x
σ )−1)

α

δ−1
, Proposition 2 gives a characterization of PHN distribution.

2.3. Moments

Moments of the PHN model can be computed numerically using routine “integrate” from software
R. The following proposition presents r-th moments of a random variable following the PHN dis-
tribution.

Proposition 3. The r-th moment of the random variable Z ∼ PHN(σ ,α), is given by

µr = E(Zr) = ασ
r
κr(α), r = 1,2, ...

where κr = κr(α) =
∫ 1

0
(
Φ−1

(1+u
2

))r
uα−1du, are computed numerically.
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Proof. The definition of moment implies

µr = E(Zr) =
∫

∞

0

2α

σ
zr

φ

( z
σ

)(
2Φ

( z
σ

)
−1
)α−1

dz.

The result follows after making the variable change u = 2Φ
( z

σ

)
−1. 2

Therefore, the first four moments are given by

1. µ1 = E(Z) = ασκ1.
2. µ2 = E(Z2) = ασ2κ2.
3. µ3 = E(Z3) = ασ3κ3.
4. µ4 = E(Z4) = ασ4κ4.

Corollary 1. The asymmetry and kurtosis coefficients are given, respectively, by

√
β1 =

κ3−3ακ1κ2 +2α2κ3
1√

α(κ2−ακ2
1 )

3/2 ,

β2 =
κ4−4ακ1κ3 +6α2κ2

1 κ2−3α3κ4
1

α(κ2−ακ2
1 )

2 .

Fig. 6 and 7 depict the skewness and kurtosis coefficients for some values of the parameter α .
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Fig. 6. Skewness coefficient for some values of α
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Fig. 7. Kurtosis coefficient for some values of α

2.4. Shannon entropy

The entropy of a random variable Z is a measure of its uncertainty
Shannon entropy measure is defined by

JS =−E(log( fZ(z))).
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If follows, after extensive algebraic manipulations that Shannon entropy for the PHN model is:

JS =− log(2)− log(α)+ log(σ)+ log(
√

2π)+
ακ2

2
+

α−1
α

,

with κ2 as given above. Notice that as α = 1 (half-normal distribution), ακ2
2 = E(Z2)

2σ2 and E(Z2)=σ2,
where E(Z2) is the second moment of the half-normal distribution. Then one obtains, as a particular
case, the Shannon entropy for the half-normal distribution (see Ahsanullah et al. 2014), which is
given by

JS =
1
2
− log

(√
2
π

1
σ

)

3. Inference

In this section we discuss moments, maximum likelihood estimation, Fisher information matrix and
present results of a simulation study.

3.1. Moment estimators

Using the first two moments, the moments equations are given by

Z = ασκ1. (3.1)

and

Z2 = ασ
2
κ2. (3.2)

Solving for σ in equation (3.1), it follows that

σ = Z
ακ1

. (3.3)

Thus, replacing σ , given in Eq. (3.3), in the Eq. (3.2), it follows that:

Z2ακ2
1 −Z2

κ2 = 0. (3.4)

Solving the Eq. given in (3.2) for α we obtain α̂M, and hence replacing α by α̂M in Eq. (3.3) one
obtain σ̂M. This leads to the moments estimators (σ̂M, α̂M) for (σ ,α). The Eq. given in (3.4), is
solved numerically using function solve available in software MAPLE.

3.2. The log-likelihood function

Let Z1, ...,Zn be a random sample from random variable Z ∼ PHN(σ ,α). The likelihood function

for θ = (σ ,α) is
n

∑
i=1

l(θ ;zi), where l(θ ;z) is the log-likelihood function for θ based on the obser-

vation z, such that,

l(θ ;z) = log(2)+ log(α)− log(σ)− log(
√

2π)− z2

2σ2 +(α−1) log
(

2Φ

( z
σ

)
−1
)
.
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3.3. Score function

Some standard algebraic manipulations show that the score function is
n

∑
i=1

Sθ (θ ;zi), where

Sθ (θ ,z) = ∂ l(θ ,z)/∂θ is the vector (Sσ ,Sα ) with elements

Sσ = − 1
σ
+

z2

σ3 −
2(α−1)

σ2

(
zφ
( z

σ

)
2Φ
( z

σ

)
−1

)
,

Sα =
1
α
+ log[2Φ

( z
σ

)
−1].

The second derivatives of l(θ ;z) are:

∂ 2l(θ ;z)
∂σ2 =

1
σ2 −

3z2

σ4 +
2(α−1)zφ

( z
σ

)
σ3
[
2Φ
( z

σ

)
−1
] (2− z2

σ2 −
2zφ

( z
σ

)
σ(2Φ

( z
σ

)
−1)

)
,

∂ 2l(θ ;z)
∂α2 = − 1

α2 ,

∂ 2l(θ ;z)
∂σ∂α

= −
2zφ

( z
σ

)
σ2(2Φ

( z
σ

)
−1)

.

3.4. Fisher information matrix

Using the second derivatives above, the Fisher information matrix for the distribution PHN can be
written as

IF(σ ,α)=

(
Iσσ Iσα

Iσα Iαα ,

)
,

with elements given by

Iσσ = − 1
σ2 +

3ακ2

σ2 −
2(α−1)

σ3

[
2a11−

a31

σ2 −
2a22

σ

]
,

Iσα =
1

α2 ,

Iαα =
2

σ2 a11,

where ai j = E
[

Zi
(

φ(Z/σ)
2Φ(Z/σ)−1

) j
]

can be computed numerically.

3.5. Simulation study

A simple algorithm can be formulated for generating from the PHN distribution.

(i) Simulate Y ∼U(0,1)
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Table 1. Empirical means and standard deviations for different values of α .

n = 20 n = 50 n = 100
α α̂(SD) RMSEs α̂(SD) RMSEs α̂(SD) RMSEs

0.8 0.834(0.188) 0.139 0.814(0.116) 0.093 0.804(0.085) 0.068
1.0 1.054(0.237) 0.186 1.015(0.147) 0.116 1.002(0.103) 0.082
2.0 2.115(0.506) 0.392 2.042(0.312) 0.245 2.025(0.203) 0.162
3.0 3.189(0.744) 0.582 3.084(0.447) 0.353 3.047(0.300) 0.240
5.0 5.285(1.234) 0.954 5.123(0.779) 0.610 5.036(0.505) 0.405

(ii) Compute X = σΦ−1
(

1+Y 1/α

2

)
(iii) Return to (i).

Table 1 shows results of simulations studies, illustrating the behaviour of the MLEs for 1000
generated samples of sizes n = 20, 50 and 100 from population distributed as PHN(1,α). For each
generated sample, MLEs were computed numerically using a Newton-Raphson procedure. Means,
standard deviations (SD) and root mean squared errors (RMSEs) are reported. Observe that as the
sample size increases, estimates are closer to the true values and, moreover standard deviations and
RMSEs become smaller.

4. Illustration

Hereafter, for illustration purposes, we analyze three data sets. We consider now the computation of
the maximum likelihood estimates for the models GHN and PHN based one a real data set.

Description of the data sets.

(1) I1 Volcanoes data(Table 2): The real data corresponds to heights (in 100× feet) of 219
volcanoes studied in Tukey (1977). This data set has been recently analyzed in Castillo et
al. (2011).

(2) I2 Survival times(Table 3): The data analyzed by Kundu et al. (2008) and Leiva et al.
(2009) correspond to 72 survival times of guinea pigs injected with different doses of tuber-
cle bacilli.

(3) I3 Engineering(Table 4): The real data set analysis using a data set previously analyzed
in Birnbaum and Saunders (1969), related to the lifetimes in cycles 10−3 of aluminium
6061−T 6 pieces cut in parallel angle with the rotation direction, oscillating at the rate of
18 cycles/s at maximum pressure 31,000psi, with a total sample size of 101 units.

Table 5 presents basic descriptive statistics for the data sets.
Using results from Section 3.1, moments modified estimators used as initial estimates for the

maximum likelihood approach.
Table 6 shows parameters estimates by maximum likelihood using the bbmle package in pro-

gram R (2012). For each model we report the value of maximum likelihood estimate and the
corresponding Akaike information criterion (AIC), according to Akaike (1976), we consider also
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Table 2. Data sets 1: 219 volcanoes heights studied in Tukey (1977)

2 5 6 6 6 7 9 9 10 10 10 11 13 16 16
17 19 19 20 20 21 21 22 22 22 24 24 24 25 25
26 26 26 27 27 28 28 29 29 29 30 31 31 32 32
34 34 35 35 35 35 36 36 36 37 38 39 39 40 41
41 41 42 43 43 43 43 43 44 44 44 46 47 48 48
49 49 49 49 49 50 50 51 51 52 52 52 53 54 54
55 55 56 56 56 56 56 56 57 57 57 59 59 60 60
61 61 64 64 65 65 66 66 66 66 67 67 67 68 68
69 70 70 70 70 71 71 71 72 73 73 74 75 75 75
76 77 78 78 78 79 81 82 82 82 82 83 83 83 85
86 87 89 90 90 90 91 92 93 93 94 94 95 95 96
97 97 99 100 101 101 102 102 103 103 104 104 105 106 108

109 110 111 111 112 113 113 114 116 116 119 121 121 122 124
124 124 125 126 130 133 134 137 138 140 140 156 156 157 162
165 172 179 185 190 193 193 197 199

Table 3. Data sets 2: survival times of guinea pigs

12 15 22 24 24 32 32 33 34 38 38 43 44 48
52 53 54 54 55 56 57 58 58 59 60 60 60 60
61 62 63 65 65 67 68 70 70 72 73 75 76 76
81 83 84 85 87 91 95 96 98 99 109 110 121 127

129 131 143 146 146 175 175 211 233 258 258 263 297 341
341 376

Table 4. Data sets 3: 101 observations, maximum stress per cycle 31,000 psi

70 90 96 97 99 100 103 104 104 105 107 108 108 108
109 109 112 112 113 114 114 114 116 119 120 120 120 121
121 123 124 124 124 124 124 128 128 129 129 130 130 130
131 131 131 131 131 132 132 132 133 134 134 134 134 134
136 136 137 138 138 138 139 139 141 141 142 142 142 142
142 142 144 144 145 146 148 148 149 151 151 152 155 156
157 157 157 157 158 159 162 163 163 164 166 166 168 170
174 196 212

the modified AIC criterion (see, for example, Bozdogan (1987)), typically called consistent AIC
(CAIC) and the Bayesian information criterion (BIC) (see, for example, Schwarz (1978)). It can be
noticed that AIC, CAIC and BIC show better fit of the PHN model. The models fitted in Castillo
et al. (2011) has an AIC approximately 2236.604 for the I1. Fig. 8, 9 and 10 depicts ML fitting
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Table 5. Descriptive statistics for the three data sets

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

I1 70.25 65 56 43.01 1850.563 0.84 3.48 2 199
I2 99.82 70 60 81.12 6580.12 1.84 2.89 12 376
I3 133.7 133 142 22.36 499.78 0.326 0.973 70 212

Table 6. MLEs of the model parameters for the three data sets and the corresponding AIC, CAIC and BIC statistics.

Data Model σ α AIC CAIC BIC

I1 PHN 70.084 1.55 2229.835 2229.891 2236.613
GHN 88.736 1.297 2233.454 2233.509 2240.232

I2 PHN 117.343 1.254 805.291 805.465 809.845
GHN 129.239 1.017 807.479 807.649 812.028

I3 PHN 55.091 40.639 919.736 919.859 924.966
GHN 148.06 4.255 943.803 943.925 949.033
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Fig. 8. Histogram for dataset volcano heights, lines represent fitted distributions using maximum likelihood
estimators(left) and Survival functions and the empirical survival for I1 (right) .

for both models with the data histogram. In Figures, the empirical survival function with estimated
PHN and GHN c.d.f., also shows the good agreement between the PHN model and the I1, I2 and I3
dataset.
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Yolanda M. Gómez and Heleno Bolfarine

 

Survival times of guinea pigs

D
en

si
ty

0 100 200 300 400

0.000

0.002

0.004

0.006

0.008

0.010
PHN
GHN

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

z
S

ur
vi

va
l f

un
ct

io
n

Kaplan−Meier
PHN
GHN

Fig. 9. Histogram for dataset I2, lines represent fitted distributions using maximum likelihood estimators(left)
and Survival functions and the empirical survival for I2 (right).
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Fig. 10. Histogram for dataset I3, lines represent fitted distributions using maximum likelihood estimates(left)
and survival functions and the empirical survival for I3 (right).

Finally, we apply the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) test statistics. The
W* and A* test statistics are described in details in Chen and Balakrishnan (1995). In general, the
smaller the values of W ∗ and A∗ statistics, the better the fit to the data. The values of these statistics
for all models are given in Table 7. As expected, the values of W ∗ and A∗ for the PHN model fits
better than the GHN model for the data analyzed.
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Table 7. Goodness-of-fit tests.

Data Model Statistics
W* A*

I1 PHN 0.017 0.172
GHN 0.059 0.469

I2 PHN 0.570 3.145
GHN 0.580 3.197

I3 PHN 0.106 0.602
GHN 0.263 1.684

5. Concluding remarks

This paper focuses on studying a submodel of the family of models introduced in Pescim et al.
(2010). This model has two parameters and is an alternative to the generalized half-normal (GHN)
studied in Cooray and Ananda (2008). Most of the results present explicit expressions which are
easily computable. A simulation study is conducted for the shape parameter and show that the MLE
present small bias for small and moderate sample sizes. In the application, Akaike’s AIC, CAIC and
BIC criterion is used for model comparison which shows that the proposed model presents better fit
to the data sets analyzed than the model proposed in Cooray and Ananda (2008).
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