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1. Introduction

Let X and Y be two non-negative random variables representing time to failure of two systems with
p.d.f. respectively f (x) and g(x). Let F(x) = P(X ≤ x) and G(y) = P(Y ≤ y) be failure distributions,
and F̄(x) = 1−F(x), Ḡ(x) = 1−G(x) be survival functions of X and Y respectively. Shannon’s
(1948) measure of uncertainty associated with the random variable X and Kerridge measure of
inaccuracy (1961) are given as

H( f ) =−
∫ ∞

0
f (x) log f (x)dx , (1.1)

and

H( f ;g) =−
∫ ∞

0
f (x) logg(x)dx , (1.2)
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respectively. In case g(x) = f (x), then (1.2) reduces to (1.1).

The measures (1.1) and (1.2) are not applicable to a system which has survived for some unit of
time, say t. Ebrahimi (1996) considered the entropy of the residual lifetime Xt = [X − t|X > t] as a
dynamic measure of uncertainty given by

H( f ; t) =−
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dx . (1.3)

Extending the dynamic measure of information, a dynamic measure of inaccuracy, refer to Taneja
et al. (2009) is given as

H( f ,g; t) =−
∫ ∞

t

f (x)
F̄(t)

log
g(x)
Ḡ(t)

dx . (1.4)

Rao et al. (2004) introduced an alternate measure of entropy called cumulative residual entropy
(CRE) of a random variable X defined as

ξ (F) =−
∫ ∞

0
F̄(x) log F̄(x)dx , (1.5)

where F̄(x) = 1−F(x) is the survival function of X .
This measure is based on cumulative distribution function (CDF) rather than probability density
function, and is thus, in general more stable since the distribution function is more regular because
it is defined in an integral form unlike the density function which is defined as the derivative of the
distribution function. Some general results regarding this measure have been studied by Rao (2005),
Drissi et al. (2008) and Navarro et al. (2010).

Asadi and Zohrevand (2007) have defined the dynamic cumulative residual entropy (DCRE) as
the cumulative residual entropy of the residual lifetime Xt = [X − t|X > t]. This is given by

ξ (F ; t) =−
∫ ∞

t

F̄(x)
F̄(t)

log
F̄(x)
F̄(t)

dx . (1.6)

In this paper we propose dynamic cumulative residual and past inaccuracy measures and study
their characterization results. The paper is organized as follows. In Section 2, we consider cumu-
lative residual inaccuracy measure and derive a lower bound to it. Section 3 contains the dynamic
cumulative residual inaccuracy. In Section 4, we study characterization results concerning dynamic
cumulative residual inaccuracy measure and also characterize a few specific lifetime distributions.
Section 5 considers dynamic cumulative past inaccuracy measure and its characterization result.
Finally we give some conclusions and comments.

2. Cumulative Residual Inaccuracy Measure

If F̄(.) and Ḡ(.) are survival functions of lifetime random variables X and Y respectively, then the
cumulative residual inaccuracy is defined as

ξ (F ;G) =−
∫ ∞

0
F̄(x) log Ḡ(x)dx . (2.1)

Here and throughout this communication, we consider the random variables X and Y with the same
support.
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When the two distributions F and G coincide, the measure (2.1) reduces to the cumulative resid-
ual entropy (1.5). Even if the two random variables X and Y satisfy the proportional hazard model
(PHM), refer to Cox (1972) and Efron (1981), that is, if λG(x) = βλF(x), or equivalently

Ḡ(x) = [F̄(x)]β , (2.2)

for some constant β > 0, then obviously the cumulative residual inaccuracy (2.1) reduces to a con-
stant multiple of the cumulative residual entropy (1.5).

Example 2.1 Let a non-negative random variable X be uniformly distributed over (a,b), a < b,
with density and distribution functions respectively given by

f (x) =
1

b−a
and F(x) =

x−a
b−a

, a < x < b.

If the random variables X and Y satisfy the proportional hazard model (PHM), then the distribution
function of the random variable Y is

Ḡ(x) = [F̄(x)]β =

[
b− x
b−a

]β
, a < x < b , β > 0.

Substituting these in (2.1) and simplifying we obtain the cumulative inaccuracy measure as

ξ (F ;G) =
β (b−a)

4
.

2.1. A lower bound to ξ (F ;G)

Before deriving the lower bound to ξ (F ;G), we define the log-sum inequality given as follows: Let
m be a sigma finite measure. If f and g are positive and m-integrable, then∫

log
(

f
g

)
dm ≥

[∫
f dm

]
log

∫
f dm∫
gdm

. (2.3)

We prove the following result.

Theorem 2.1. If X and Y are non-negative random variables with finite means E(X) and E(Y )
respectively and CRE ξ (F) is finite, then

ξ (F ;G)≥
∫ ∞

0
F(x)F̄(x)dx+E(X)−E(Y ). (2.4)

Proof We have

ξ (F ;G) = −
∫ ∞

0
F̄(x) log Ḡ(x)dx ,

= −
∫ ∞

0
F̄(x) log F̄(x)dx+

∫ ∞

0
F̄(x) log

F̄(x)
Ḡ(x)

dx .
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Using the log-sum inequality (2.3), we have

ξ (F ;G) ≥ ξ (F)+

(∫ ∞

0
F̄(x)dx

)
log

∫ ∞
0 F̄(x)dx∫ ∞
0 Ḡ(x)dx

,

≥ ξ (F)+E(X) log
E(X)

E(Y )
.

(2.5)

Next, using the inequality x log x
y ≥ x− y for non-negative x and y in (2.5), we obtain

ξ (F ;G) ≥
∫ ∞

0
F̄(x)F(x)dx+E(X) log

E(X)

E(Y )
,

≥
∫ ∞

0
F̄(x)F(x)dx+E(X)−E(Y ) .

This proves the result.

3. Dynamic Cumulative Residual Inaccuracy

In life-testing experiments normally the experimenter has information about the current age of the
system under consideration. Obviously the cumulative residual inaccuracy measure (2.1) defined
above is not suitable in such a situation and should be modified to take into account the current age
also. Further, if X is the lifetime of a component, which has survived upto time t, then the random
variable Xt = [X − t|X > t], called the residual lifetime random variable, has the survival function

F̄t(x) =

{
F̄(x)
F(t) ; if x > t

1 ; otherwise

and similarly for Ḡt(x). Further we know that the mean residual life function δF(t) = E[X − t|X >

t] =
∫ ∞

t F(x)dx
F(t) and the hazard rate λF(t) =

f (t)
F̄(t) characterize the distribution function F(.), and the

relation between the two is given by

λF(t) =
1+δ ′

F(t)
δF(t)

, (3.1)

where δ ′
F(t) =

d
dt δF(t).

Analogous to the measure (2.1) the cumulative inaccuracy measure for the residual lifetime
Xt = [X − t|X > t], is given by

ξ (F,G; t) =−
∫ ∞

t
F̄t(x) log Ḡt(x)dx ,

=−
∫ ∞

t

F̄(x)
F(t)

log
Ḡ(x)
G(t)

dx . (3.2)

We define the measure (3.2) as the dynamic cumulative residual inaccuracy measure. Obviously
when t = 0, then (3.2) becomes (2.1).
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Example 3.1 Let X be a non-negative random variable with p.d.f.

fX(x) =
{

2x ; if 0 ≤ x < 1
0 ; otherwise

and the suvival function F̄(x) = 1−F(x) = (1− x2), and let the random variable Y be uniformly
distributed over (0,1) with density and survival functions given respectively by gY (x) = 1 and
ḠY (x) = 1− x , 0 < x < 1.
Substituting these values in (3.2), we obtain the dynamic cumulative residual inaccuracy measure
as

ξ (F,G; t) =

{
9(1−t)−2(1−t)2

18(1+t) ; if 0 ≤ t < 1
0 ; otherwise

The behaviour of the dynamic cumulative residual inaccuracy measure ξ (F,G; t) for t ∈ (0, 1)
is shown in Fig. 3.1.

Fig. 3.1: Plot of ξ (F,G; t) against t ∈ [0 ,1] .

4. Characterization Problem

The general characterization problem is to determine when the proposed dynamic cumulative resid-
ual inaccuracy measure (3.2) characterizes the distribution function uniquely. We study the charac-
terization problem under the proportional hazard model (2.2).
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Theorem 4.1. Let X and Y be two non negative random variables with survival functions F̄(x) and
Ḡ(x) satisfying the proportional hazard model (2.2). Let ξ (F,G; t) < ∞,∀ t ≥ 0 be an increasing
function of t, then ξ (F,G; t) uniquely determines the survival function F̄(x) of the variable X.

Proof Rewriting (3.2) as

ξ (F,G; t) =− 1
F(t)

∫ ∞

t
F̄(x) log Ḡ(x)dx+δF(t) log Ḡ(t) , (4.1)

where δF(t) is the mean residual life function. Substituting (2.2) into (4.1) gives

ξ (F,G; t) =− β
F(t)

∫ ∞

t
F̄(x) log F̄(x)dx+βδF(t) log F̄(t) .

Differentiating this w.r.t. t both sides, we obtain

ξ ′(F,G; t) = β log F̄(t)[1+δ ′
F(t)]−βλF(t)

∫ ∞

t

F̄(x)
F(t)

log F̄(x)dx−βλF(t)δF(t) , (4.2)

where λF(t) is hazard rate function. Substituting (3.1) and (4.1) in (4.2) we obtain

ξ ′(F,G; t) = λF(t){ξ (F,G; t)−βδF(t)} . (4.3)

Let F1,G1 and F2,G2 be two sets of the probability distribution functions satisfying the proportional
hazard model, that is, λG1(x) = βλF1(x), and λG2(x) = βλF2(x), and let

ξ (F1,G1; t) = ξ (F2,G2; t) ∀ t ≥ 0 . (4.4)

Differentiating it both sides w.r.t. t, and using (4.3), we obtain

λF1(t){ξ (F1,G1; t)−βδF1(t)}= λF2(t){ξ (F2,G2; t)−βδF2(t)}. (4.5)

If for all t ≥ 0, λF1(t) = λF2(t), then F̄1(t) = F̄2(t) and the proof will be over, otherwise, let

A = {t : t ≥ 0,and λF1(t) ̸= λF2(t)} (4.6)

and assume the set A to be non empty . Thus for some t0 ∈ A, λF1(t0) ̸= λF2(t0). Without loss of
generality suppose that λF2(t0)> λF1(t0). Using this, (4.5) for t = t0 gives

ξ (F1,G1; t0)−βδF1(t0)> ξ (F2,G2; t0)−βδF2(t0),

which implies that

δF1(t0)< δF2(t0),

a contradiction. Thus the set A is empty set and this concludes the proof.

In the next result, based on dynamic cumulative residual inaccuracy measure (3.2), we characterize
some specific lifetime distributions.
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Theorem 4.2. Let X and Y be two non-negative continuous random variables satisfying the pro-
portional hazard model (2.2). If X is with mean residual life δF(t), then the dynamic cumulative
residual inaccuracy measure

ξ (F,G; t) = c δF(t), c > 0 (4.7)

if, and only if

(i) X follows the exponential distribution for c = β ,
(ii) X follows the Pareto distribution for c > β ,
(iii) X follows the finite range distribution for 0 < c < β .

Proof First we prove the ’if’ part.
(i) If X has an exponential distribution with survival function F̄(x) = exp(−θx),θ > 0, then the
mean residual life function δF(t) = 1

θ . The dynamic cumulative residual inaccuracy measure (3.2)
under PHM (2.2) is given as

ξ (F,G; t) =
β
θ
= cδF(t),

for c = β .

(ii) If X follows a Pareto distribution with p.d.f.

f (x) =
aba

(x+b)a+1 , a > 1, b > 0,

then the survival function is

F̄(x) = 1−F(x) =
(

1+
x
b

)−a
=

ba

(x+b)a ,

and the mean residual life is

δF(t) =
∫ ∞

t F̄(x)dx
F̄(t)

=
t +b
a−1

. (4.8)

The dynamic cumulative inaccuracy measure (3.2), under PHM (2.2) is given by

ξ (F,G; t) =
βa(t +b)
(a−1)2 = cδF(t) ,

for c = βa
a−1 > β .
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(iii) In case X follows a finite range distribution with p.d.f.

f (x) = a(1− x)a−1, a > 1, 0 ≤ x ≤ 1,

then the survival function is

F̄(x) = 1−F(x) = (1− x)a,

and the mean residual life is

δF(t) =
1− t
a+1

.

The inaccuracy measure (3.2) under PHM (2.2) is given by

ξ (F,G; t) =
βa(1− t)
(a+1)2 = cδF(t) ,

for c = βa
a+1 < β .

This proves the ‘if’ part.

To prove the ′ only if 8 part, consider (4.7) to be valid. Using (4.1) under PHM, it gives

− β
F(t)

∫ ∞

t
F̄(x) log F̄(x)dx+βδF(t) log F̄(t) = cδF(t) .

Differentiating it both sides w.r.t. t, we obtain

c
β

δ ′
F(t) = δ ′

F(t) log F̄(t)−λF(t)δF(t)+ log F̄(t)

−λF(t)
1

F̄(t)

∫ ∞

t
F̄(x) log F̄(x)dx

= δ ′
F(t) log F̄(t)−λF(t)δF(t)+ log F̄(t)+λF(t)[

c
β

δF(t)−δF(t) log F̄(t)] .

From (3.2) put δ ′
F(t) = λF(t)δF(t)−1 and simplify, we obtain

λF(t)δF(t) =
c
β

,

which implies

δ ′
F(t) =

c
β
−1 .

Integrating both sides of this w.r.t. t over (0, x) yields

δF(x) =
(

c
β
−1

)
x+δF(0). (4.9)

The mean residual life function δF(x) of a continuous non-negative random variable X is linear of
the form (4.9) if, and only if the underlying distribution is exponential for c = β , Pareto for c > β ,
or finite range for 0 < c < β , refer to Hall and Wellner (1981). This completes the theorem.
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Theorem 4.2 can be extended by taking c as a function of t. We state the following result:

Theorem 4.3. Let X and Y be two non-negative continuous random variables satisfying the pro-
portional hazard model (2.2). If

ξ (F,G; t) = c(t)δF(t) , for t ≥ 0, (4.10)

then

δF(t) =
[

k+
(∫ t

0

{
c(x)−β

β

}
e

c(x)
β dx

)]
e−

c(t)
β , (4.11)

where k = δF(0)e
c(0)

β .

Proof Substituting (4.10) in (4.3), we obtain

ξ ′(F,G; t) = λF(t)δF(t){c(t)−β} . (4.12)

Differentiating (4.10) w.r.t. t and substituting from (4.12), we obtain

c′(t)δF(t)+ c(t)δ ′
F(t) = λF(t)δF(t){c(t)−β} .

Substituting λF(t)δF(t) = 1+δ ′
F(t) from (3.2) and simplifying, we obtain

δ ′
F(t)+

c′(t)
β

δF(t) =
c(t)−β

β
, (4.13)

a linear differential equation in δF(t). Solving this we obtain (4.10).

For c(t) = at +b, t > 0 and a > 0, from (4.10), we obtain the general model with mean residual life
function

δF(t) = ke
−(at+b)

β +
at −2β +b

a
− (b−2β )e

−at
β

a
. (4.14)

If a = 0, we obtain the characterization results given by Theorem 4.2.

Further for β = 1, (4.14) reduces to

δF(t) = k e−at−b +
b−2+at

a
− (b−2)e−at

a
,

a result given by Navarro J. et al. (2010) in context with the cumulative residual entropy (1.3).

5. Dynamic Cumulative Past Inaccuracy Measure

Measures of uncertainty in context with past lifetime distributions have been studied extensively in
the literature, refer to, Di Crescenzo and Longobardi (2002, 2004) Nanda and Paul (2006), Kumar et
al. (2010). For instance if at time t, a system which is observed only at certain preassigned inspection
times, is found to be down, then the uncertainty of the system’s life relies on the past, that is, at
which instant in (0, t) the system has failed. In this situation, the random variable tX = [X |X ≤ t] is
suitable to describe the time elapsed between the failure of a system and the time when it is found
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to be ’down’. The past lifetime random variable tX is related with two relevant ageing functions,
the reversed hazard rate defined by µF(x) =

f (x)
F(x) , and the mean past lifetime (MPT) defined by

δ ∗
F(t) = E(t −X |X < t) = 1

F(t)

∫ t
0 F(x)dx, which are further related as follows

µF(t) =
1−δ ′∗

F (t)
δ ∗

F(t)
, (5.1)

where δ ′∗
F (t) = d

dt δ ∗
F(t). For further results on reversed hazard rate function refer to Gupta and

Nanda (2001).
In analogy with the cumulative residual entropy (CRE) measure (2.1), Di Crescenzo and Longobardi
(2009) introduced and studied the cumulative entropy, defined as

ξ ∗(F) =−
∫ ∞

0
F(x) logF(x)dx. (5.2)

A dynamic version of the cumulative entropy (5.2) given as

ξ ∗(F ; t) =−
∫ t

0

F(x)
F(t)

log
F(x)
F(t)

dx , (5.3)

was also studied by Di Crescenzo and Longobardi (2009).
Analogous to the Kerridge measure of inaccuracy (1.2), we propose a cumulative inaccuracy mea-
sure as

ξ ∗(F ;G) =−
∫ ∞

0
F(x) logG(x)dx , (5.4)

where F(x) is the baseline distribution function and G(x) can be considered as some reference dis-
tribution function. When these two distributions coincide, the measure (5.4) reduces to the measure
(5.2) the cumulative entropy.
In case the two random variables X and Y satisfy the proportional reversed hazard model (PRHM),
refer to Gupta et al. (2007) , that is, if µG(x) = β µF(x), or equivalently

G(x) = [F(x)]β ,β > 0 , (5.5)

then obviously the cumulative inaccuracy measure (5.4) reduces to a constant multiple of the cumu-
lative information measure (5.2).

The distribution function of the past lifetime random variable [X |X ≤ t] is given by

Ft X(x) =

{
F(x)
F(t) ; if x < t
1 ; otherwise

and similarly for Ḡt(x). Thus the cumulative inaccuracy measure analogous to the inaccuracy mea-
sure (5.4), for the past lifetime distribution is given by

ξ ∗(F,G; t) =−
∫ t

0
Ft X(x) logGt X(x)dx ,

=−
∫ t

0

F(x)
F(t)

log
G(x)
G(t)

dx . (5.6)
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We define the measure (5.6) as the dynamic cumulative past inaccuracy measure. When t → ∞, the
measure (5.6) reduces to (5.4).

Example 5.1 Let X and Y be two nonnegative random variables having distribution functions
respectively

F(x) =


x2

2 , for 0 ≤ x < 1
x2+2

6 , for 1 ≤ x < 2

1 for x ≥ 2

and

G(x) =


x2+x

4 , for 0 ≤ x < 1
x
2 , for 1 ≤ x < 2

1 for x ≥ 2

The cumulative past inaccuracy measure is given by

ξ ∗(F,G; t) =


2t
9 − (t−2)

6t − 1
3t2 log(t +1), for 0 < t < 1

t
9 +

16t
9(t2+2) −

17
18(t2+2) −

18log2+24log t
18(t2+2) , for 1 ≤ t < 2

log2+ 1
6 log5− 41

54 −
8
3 tan−1(1

2) for t ≥ 2

Analogous to Theorem 4.1, the characterization problem in case of the dynamic measure (5.6) under
the proportional reversed hazard rate model (5.5) is given as follows.

Theorem 5.1. Let X and Y be two non-negative random variables with distribution functions F(.)

and G(.) satisfying the proportional reversed hazard rate model (5.5). Let ξ ∗(F,G; t) < ∞,∀ t ≥ 0
be an decreasing function of t, then ξ ∗(F,G; t) uniquely determines the distribution function F(.) of
the variable X.

The proof is silmilar to that of Theorem 4.1 . Hence omitted.

Next, we characterize a specific distribution by using the dynamic cumulative past inaccuracy mea-
sure. The result is stated as follows.

Theorem 5.2. If F(.) and G(.) are two distribution functions satisfying the proportional reversed
hazard model (5.5), then the dynamic cumulative past inaccuracy measure

ξ ∗(F,G; t) = cδ ∗
F(t) , 0 < c < β . (5.7)

if, and only if t F(x) =
( x

b

) c
β−c , b > 0 .

Proof Rewriting (5.6) as

ξ ∗(F,G; t) =− 1
F(t)

∫ t

0
F(x) logG(x)dx+δ ∗

F(t) logG(t) , (5.8)

Substituting (5.5), this gives

ξ ∗(F,G; t) =− β
F(t)

∫ t

0
F(x) logF(x)dx+βδ ∗

F(t) logF(t) . (5.9)
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Differentiating this w.r.t. t both sides, we obtain

ξ ′∗(F,G; t) = β logF(t)[δ ′∗
F (t)−1]+β µF(t)

∫ t

0

F(x)
F(t)

logF(x)dx+β µF(t)δ ∗
F(t) , (5.10)

Substituting (5.1) and (5.9) in Eq. (5.10), we obtain

ξ ′∗(F,G; t) = µF(t){βδ ∗
F(t)−ξ ∗(F,G; t)} . (5.11)

Let us take that (5.7) is valid, then differentiate both side w.r.t. t, we get

ξ ′∗(F,G; t) = cδ ′∗
F (t) . (5.12)

Put these value to (5.11) , we get

cδ ′∗
F (t) = (β − c)µF(t)δ ∗

F(t) . (5.13)

Using(5.1)and simplify, we obtain

δ ′∗
F (t) =

(
β − c

β

)
= 1− c

β
. (5.14)

This gives

δ ∗
F(t) =

(
β − c

β

)
t . (5.15)

Divide (5.14) by (5.15), we obtain

1−δ ′∗
F (t)

δ ∗
F(t)

= µF(t) =
(

c
β − c

)
1
t
. (5.16)

We know the relationship between reversed hazard rate and distribution function is given by

F(x) = exp
[∫ x

0
µF(t)dt

]
,

this gives

F(x) =
( x

b

) c
β−c

, b > 0. (5.17)

The reverse part is straightforward and easy to prove.

Example 5.2 Let X and Y be two non-negative random variables satisfying the proportional reversed
hazard model (PRHM) and let

fX(x) =
{

axa−1 ; if 0 ≤ x < 1, a > 0
0 ; otherwise

The distribution function F(x) = xa, and G(x) = [F(x)]β , β > 0.
Substituting these values in (5.6), after simplification we get

ξ ∗(F,G; t) =
t

(a+1)2 = cδ ∗
F(t) ,

where c = 1
a+1 and mean past lifetime is δ ∗

F(t) =
t

a+1 .
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Next, we extend the result (5.7) to a general case taking c as a function of t. We state the following
result:

Theorem 5.3. If X and Y satisfy the PRHM (5.5) and

ξ ∗(F,G; t) = c(t)δ ∗
F(t) , for t ≥ 0, (5.18)

then

δ ∗
F(t) =

(∫ t

0

{
β − c(x)

β

}
e

c(x)
β dx

)
e−

c(t)
β . (5.19)

The proof is similar to that of Theorem 4.3. Hence omitted.

For c(t) = at+b, t > 0 and a > 0, from (5.19), we obtain the general model with mean past lifetime
function

δ ∗
F(t) =

2β −at −b
a

+
(b−2β )e

−at
β

a
. (5.20)

Further for β = 1, (5.20) reduces to

δ ∗
F(t) =

2−at −b
a

− (b−2)e−at

a
,

a result given by Di Crescenzo and Longobardi (2009) in context with cumulative entropy.

Conclusions and Comments: The cumulative distribution function based measures of entropy
ξ (F) and ξ ∗(F) are in general more stable in comparison to probability density function based
measure H( f ) given by Shannon (1948). The concept of cumulative entropy is extended to cumula-
tive inaccuracy and further to their dynamic versions viz. cumulative residual inaccuracy ξ (F,G; t)
and cumulative past inaccuracy ξ ∗(F,G; t) . The characterization results concerning, when these
inaccuracy measures determine the underlying distributions uniquely, have been studied and a few
specific lifetime distributions have been characterized. It is expected that dynamic inaccuracy mea-
sures introduced in this paper will encourage the researchers to explore this concept further.
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