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Abstract. In the present paper, the multiple scales is applied to investigate the internal resonance and 
vibration suppression of the system of tracked emergency ambulance. The delayed feedback control is 
employed to suppress the amplitude of the primary system when the 1:2 internal resonance occurs. The 
effect of gain and time delay on vibration suppression is investigated. The results show that it can be 
chose the appropriate values of gain and time delay to obtain the best performance of vibration 
suppression for the primary system. 

Introduction 
The tracked emergency ambulance is the vehicle equipped with emergency equipment, medicines 

and stretchers used to transport the sick and wounded [1]. In order to achieve wounded security transfer 
and the way to treat wounded, it is necessary to have good mobility to satisfy comfort for sick and 
wounded. It is important to study the vibration reduction of the tracked emergency ambulance 
vibrating system [2]. Yang et al. [3] investigate the physical properties of tracked emergency ambulance, 
and the mechanics model is optimized. The focus of present paper is to apply the delayed feedback 
control to suppress the vibration of the primary system of tracked emergency ambulance. The 
technique of delayed feedback control vibration absorber is a new technique of vibration suppression. 
Delayed position feedback control applied to dynamical structures was first presented by Olgac et al. [4] 
by introducing a delayed resonator. Recently, the author’s research [5,6] show that the delayed feedback 
control can be used to suppress the vibration of the primary system in the nonlinear system. 

The formulation of the Problem 
A two degree of freedom tracked emergency ambulance vibrating system is shown in Fig. 1. The 

governing equations of the delayed feedback control system are 

2
1 1 1 1 2 1 1 2 n 1 2 1 1m x c (x x ) k (x x ) k (x x ) x (t ) 0+ − + − + − + ρ − τ =&& & & &  (1) 

2
2 2 1 1 2 1 1 2 n 1 2 2 2 2 2 1 1m x c (x x ) k (x x ) k (x x ) k x c x x (t ) f cos( t)− − − − − − + + − ρ − τ = ω&& & & & &  (2) 

 
Fig. 1: A two degree of freedom tracked emergency ambulance vibrating system with delayed feedback control 
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Here, it is defined the wounded and stretcher as primary system and the frame as isolation system. 
Then 1m and 2m  are the mass of the primary system and isolation system, 1k  and 2k  are the linear 
spring stiffness of the primary system and isolation system, 1k is the nonlinear spring stiffness between 
primary system and isolation system. 1c  and 2c  are the linear damping coefficients of the primary 
system and isolation system respectively. 1ρ  is the linear damping feedback gain of the delayed 
feedback control signal, τ  is the time delay, and 1 1x (t ) x τ− τ =& & . f  is the amplitude corresponding to 
the external excitation force, ω  is the frequency of external excitation, t  is the time, and ( ) ( )d / dt⋅ = .  

Eqs. (1) and (2) can be expressed as 

2 2
1 11 1 2 1 1 1 1 1 2

2 2
2 21 2 2 1 2 1 2 1 2

q qm r m 0 k 2r k r (k k ) 0
q q0 m r m 0 k 2r k r (k k )

   + − + +   
+      + − + +      

&&
&&

  

2
11 1 1 1 1 2 1 1 1 2 1 1 2 1 2

2
21 1 1 2 1 1 2 1 2 1 2 1 2 1 2

qc 2r c r (c c ) c r c r c r r (c c )
+

qc r c r c r r (c c ) c 2r c r (c c )
 − + + − − + +  

ε   − − + + − + +   

&
&

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 n 1 2 1 1 2 2 1 1 1 2 1

2 n 1 2 1 1 2 2 2 1 1 2 2

1 r k q q r q r q 1 r q q r f cos( t)
1 r k q q r q r q 1 r q q r f cos( t)

τ τ

τ τ

− + − − + − ρ +  ω  +ε = ε   − + − − + − ρ + ω    

&
&

 (3) 

where 1ω  and 2ω  are the first and second modal frequency of the vibrating system, 21
1 1

1

mr 1
k

= − ω , 

21
2 2

1

mr 1
k

= − ω , 1 1c c= ε , 2 2c c= ε , 1 1= ερ ρ , n nk k= ε , f f= ε , 1 1

1 2 22

x 1 1 q
r r qx

     
=     

    
.  

Perturbation Analysis 
In this section, the method of multiple scales is applied to obtain the second-order approximate 

solutions of Eqs. (3) using the following form 

1 11 0 1 12 0 1q (t,ε) q (T ,T , ) q (T ,T , )= ⋅⋅ ⋅ + ε + ⋅⋅⋅ + ⋅ ⋅⋅  (4) 

2 21 0 1 22 0 1q (t,ε) q (T ,T , ) q (T ,T , )= ⋅⋅⋅ + ε + ⋅⋅⋅ + ⋅⋅⋅  (5) 

1τ 11τ 0 1 2 1 11τ 0 1 2 1 12τ 0 1 2q q (T ,T ,T , )- D q (T ,T ,T , ) D q (T ,T ,T , )= − τ ⋅⋅⋅ ετ − τ ⋅⋅⋅ + ε − τ ⋅⋅⋅   

2 2
2 2

1 11τ 0 1 2 1 12τ 0 1 2D q (T ,T ,T , ) D q (T ,T ,T , )
2

ε τ
+ − τ ⋅⋅⋅ − ε τ − τ ⋅⋅⋅ + ⋅⋅ ⋅

 (6) 

2τ 21τ 0 1 2 1 21τ 0 1 2 1 22τ 0 1 2q q (T ,T ,T , )- D q (T ,T ,T , ) D q (T ,T ,T , )= − τ ⋅⋅⋅ ετ − τ ⋅⋅⋅ + ε − τ ⋅⋅ ⋅  

2 2
2 2

1 21τ 0 1 2 1 22τ 0 1 2D q (T ,T ,T , ) D q (T ,T ,T , )
2

ε τ
+ − τ ⋅⋅ ⋅ − ε τ − τ ⋅⋅ ⋅ + ⋅⋅ ⋅

  (7) 
Substituting Eqs. (4)-(7) into Eq. (3), and equating coefficients of like powers of ε  yield 

0ε :  

2 2
0 11 1 11D q q 0+ ω =  (8) 
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2 2
0 21 2 21D q q 0+ ω =  (9) 

1ε : 

2 2 2 2
0 12 1 12 1 1 2 0 1 11 1 1 1 1 1 2 0 112

1 1 2

1D q q { 2(m r m )D D q c 2r c r (c c ) D q
m r m

 + ω = − + − − + + +   

[ ] ( ) ( )2
1 1 1 2 1 1 2 1 2 0 21 1 n 11 21 1 11 2 21c r c r c r r (c c ) D q 1 r k q q r q r q− − − + + − − + − −   

( ) ( ) ( )}1 1 0 11 0 21 11 r D q D q r f cos tτ τ− − ρ + + ω  (10) 

[ ]2 2 2
0 22 2 22 1 2 2 0 1 21 1 1 1 2 1 1 2 1 2 0 112

1 2 2

1D q q { 2(m r m )D D q c r c r c r r (c c ) D q
m r m

+ ω = − + − − − + +
+  

( ) ( )22
1 2 1 2 1 2 0 21 2 n 11 21 1 11 2 21c 2r c r (c c ) D q 1 r k q q r q r q − − + + − − + − −   

( ) ( ) ( )}2 1 0 11 0 21 21 r D q D q r f cos tτ τ− − ρ + + ω  (11) 

Where ( )2
1 1 1 1 1 22

1 2
1 1 2

k 2r k r k k
m r m

− + +
ω =

+
, ( )2

1 2 1 2 1 22
2 2

1 2 2

k 2r k r k k
m r m

− + +
ω =

+
.  

The solutions of Eqs. (8) and (9) can be expressed as 

1 0 1 0i T -i T
11 1 1q A(T )e A(T )eω ω= +  (12) 

2 0 2 0i T -i T
21 1 1q B(T )e B(T )eω ω= +  (13) 

Substituting Eqs. (12)-(13) into Eqs. (10)-(11), we can obtain 

( )1 0 2 0 1 2 01 0 2 0i T i T2 2
0 12 1 12 1 2 3

i
4 62

1

+ Ti2 T i2 T
5

1 2

1D q q {K K e K e K e
m

K e K
r

e
m

ω ω ω ωω ω+ ω = + + +
+

+ +   

( ) ( ) ( ) }1 0 2 02 1 0 0
7 98 10

i T i Ti i TTK e K e K e ccK e ω τ ω τω ωω − −−+ + + ++  (14) 

( )1 0 2 1 2 01 0 2 00i T i T2 2
0 22 2 22 11 12 13 14 162

1

i +

2 2

Ti2 T i2 T
15

1D q q {K K e K e K e K
m r

K e
m

eω ω ωωω ω+ ω = +
+

++ ++  

}2 1 00 1 0 2 0( ) ( ) ( )
117 19 208

i T i T T Ti iK e K e K eK e ccω ω ω τ ωω τ− − −+ + ++ +  (15) 
Where cc  denotes the complex conjugate terms, and 1k  - 20k  are the coefficients, the express of 

1k  - 20k  is omitted due to space limitations.  
In the following section, a case of primary resonance and 1:2 internal resonance is considered. To 

describe the nearness of the external resonance quantitatively, a detuning parameter 1σ  is introduced as 

1 1ω = ω + εσ . Similarly, the nearness of the internal resonance is represented by a detuning parameter 

2σ  defined as 2 1 22ω = ω + εσ . Setting the coefficients of the secular terms to zero into Eqs. (14)-(15), 
and yield the solvability conditions which are given by 
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( ) ( ) ( ) 2 1i T2
1 1 1 1 1 1 2 1 1 n 1 2 1 22

1 1 2 1

1D A { c 2r c r (c c ) A i2 1 r k 1 r r r r ABe
2 m r m

σ = − − + + ω + − − − + + ω
 

( ) 1 1 1i i T
1 1 1 1

11 r Ae i r fe
2

− ω τ σ − − ρ ω − 


 (16) 

( ) ( ) 2 1
2 -i T2 2

1 1 2 1 2 1 2 2 2 n 12
1 2 2 2

1D B { c 2r c r (c c ) B i 1 r k 1 r A e
2(m r m )

σ = − − + + ω + − − + ω
 

( ) }2
2 1 21 ir Be ω τρ ω −− −  (17) 

Introducing the polar notation 1 1i (T )
1 1

1A(T ) a(T )e
2

θ=  and 2 1i (T )
1 1

1B(T ) b(T )e
2

θ=  into Eqs. (16)-(17) and 

setting the coefficients of the real and imaginary parts to zero yield the algebraic equations as 

( )
2

1 1 1 1 1 2 12
1 1 2 1

1a { c 2r c r (c c ) a
2 m r m

′  = − − + + ω + ω
 

( ) ( ) ( ) ( ) }1 n 1 2 1 2 2 1 1 1 1 1 11 r k 1 r r r r absin 1 r a cos r f sin+ − − − + φ − − ρ ω ω τ + φ  (18) 

( )
2

1 1 1 2 1 12
1 1 2 1

1a {2(m r m ) a
2 m r m

′φ = + ω σ
+ ω

  

( ) ( ) ( ) ( ) }1 1 2 1 2 2 1 1 1 1 1 11 1 cos 1 sin cosnr k r r r r ab r a r fφ ρ ω ωτ φ− − − − + − − +  (19) 

( )
2

1 2 1 2 1 2 22
1 2 2 2

1b { c 2r c r (c c ) b
2 m r m

′  = − − + + ω + ω
 

( ) ( ) ( ) ( )}2 2
2 1 2 2 1 2 2

1 1 1 sin 1 cos
2 nr k r a r bφ ρ ω ω τ− − − − −  (20) 

( ) ( )2
1 2 1 2 2 2 1 22

1 2 2 2

1b(2 ) {2 m r m b(2 )
2 m r m

′ ′φ + φ = + ω σ − σ
+ ω

 

( ) ( ) ( ) ( )2 2
2 1 2 2 1 2 2

1 1 1 cos 1 sin
2 nr k r a r bφ ρ ω ω τ − − − − − 


 (21) 

Where a  and b  are the amplitude of the first and second mode, 1 1 1 1Tφ = σ − θ , 2 1 2 2 12 Tφ = θ − θ − σ . 
The response of the absorber and primary system can be approximately express as follow: 

1 1 0 1 1 2 0 2 1x a cos[ T (T )] b cos[ T (T )]≈ ω + θ + ω + θ , 2 1 1 0 1 1 2 2 0 2 1x r a cos[ T (T )] r bcos[ T (T )]≈ ω + θ + ω + θ .  

The Amplitude – Frequency Response Curves of Linear Vibration System 

The equilibrium solutions can be obtained by setting 1 2a = =b=′ ′ ′φ φ  in Eqs. (18)-(21). Fig. 2 shows the 
amplitude-frequency response curves of the linear vibration system. The parameters are chosen as 
follows:  
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1m 255kg= , 2m 1600kg= , 1k 130128N / m= , 2k 3135000N / m= , 

nk 13012.8N / m= , 1c 2000N s / m= ⋅ , 2c 13000N s / m= ⋅ , 1 21.9rad / sω = , 2 43.2rad / sω = , 

2 = -0.6σ . In the following figures, amp1  and amp2  represent the primary system and isolation system.   

          
Fig. 2: Amplitude-frequency response curves of the linear vibration system. 

It can be observed from Fig. 2, the amplitude of the primary system is about 2.2mm when the 
external excitation frequency nears the first modal frequency of the vibrating system. The amplitude of 
the isolation system is maximum when the external excitation frequency nears the second modal 
frequency of the vibrating system. In the next section, we discuss the effect of delayed feedback control 
on vibration suppression of the vibrating system. 

Vibration Suppression of the Delayed Feedback Control 
From the above section, it can be observed that the amplitude of the primary system is maximum, we 

take 1= 0σ  and 1= 0.3σ  as examples to discuss the delayed feedback control on vibration suppression 
of the system.  

The amplitude-delay response curves of the primary system and isolation system for different values 
of the delayed feedback gain are shown in Fig. 3-Fig. 5 when 1= 0σ , where the other parameters are: 

1m 255kg= , 2m 1600kg= , 1k 130128N / m= , 2k 3135000N / m= , 

nk 13012.8N / m= , 1c 2000N s / m= ⋅ , 2c 13000N s / m= ⋅ . Amp1 represents the amplitude of the 
primary system, amp2 represents the amplitude of the isolation system.  

          

 (a)                                                                  (b) 
Fig. 3: Amplitude-delay response curves when 1=500ρ ,  (a) primary system, (b) isolation system 

          

 (a)                                                                  (b) 
Fig. 4: Amplitude-delay response curves when 1=1500ρ ,  (a) primary system, (b) isolation system 
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 (a)                                                                  (b) 
Fig. 5: Amplitude-delay response curves when 1=6000ρ ,  (a) primary system, (b) isolation system 

Fig. 3 shows the amplitude-delay response curves of the primary system and isolation system when 
1=500ρ . As τ  increases, the amplitude of the primary system increases in the beginning. Then the 

amplitude of the primary system decreases as τ  increases. It can be observed that there are some 
interval for time delay the amplitude of the primary system can be suppressed to a minimum value 
(about 1.90mm). These time delay interval we called it “time delay vibration suppression interval”.   

As the gain increases to 1=1500ρ , Fig. 4 shows that the amplitude of the primary system can be 
suppressed to a minimum value (about 1.30mm) when time delay is located in “time delay vibration 
suppression interval”. It can be observed the amplitude of the primary system can be suppressed to a 
smaller value (about 0.58mm) in Fig. 5 comparing with Fig. 4. 

The amplitude-delay response curves of the primary system and isolation system for different values 
of the delayed feedback gain are shown in Fig. 6-Fig. 8 when 1= 0.3σ , where the other parameters are: 

1m 255kg= , 2m 1600kg= , 1k 130128N / m= , 2k 3135000N / m= , 

nk 13012.8N / m= , 1c 2000N s / m= ⋅ , 2c 13000N s / m= ⋅ . Amp1 represents the amplitude of the 
primary system, amp2 represents the amplitude of the isolation system.  

      

(a)                                                                  (b) 
Fig. 6: Amplitude-delay response curves when 1=500ρ ,  (a) primary system, (b) isolation system 

         
 (a)                                                                  (b) 

Fig. 7: Amplitude-delay response curves when 1=1500ρ ,  (a) primary system, (b) isolation system 
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 (a)                                                                  (b) 

Fig. 8: Amplitude-delay response curves when 1=6000ρ ,  (a) primary system, (b) isolation system 

In Fig. 6, It can be observed that when time delay is located in “time delay vibration suppression 
interval”, the amplitude of the primary system can be suppressed to a minimum value (about 1.94mm). 
As the gain increases to 1=1500ρ , Fig. 7 shows that the amplitude of the primary system can be 
suppressed to a minimum value (about 1.30mm) when time delay is located in “time delay vibration 
suppression interval”. It can be observed the amplitude of the primary system can be suppressed to a 
smaller value (about 0.59mm) in Fig. 8 comparing with Fig. 7.  

Summary 
The delayed feedback control is applied to control the vibration in tracked emergency ambulance 

when the external excitation frequency nears the first modal frequency of the vibrating system. The 
effect of the gain and time delay on vibration suppression of the primary system is studied. The 
amplitude of the primary system can be suppressed when the appropriate gain and time delay are 
chosen. There are some time delay vibration suppression intervals for a fixed gain, the amplitude of the 
primary system can be suppressed to a minimum when time delay located in these time delay interval. 
As the gain increase, the performance vibration suppression is improved when the time delay located in 
the time delay vibration suppression interval.  
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