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ABSTRACT: By using the Floquet transform method and based on the periodic structure’s theory, a 
theoretical model has been developed to determine the dynamic response of the periodic viaduct ac-
counted for the non-uniform seismic excitations at different piers of the viaduct in this study. Numer-
ical results show that there are three kinds of characteristic waves propagating in the periodic viaduct 
for the in-plane vibrations of the viaduct. The first kind of wave is a highly decaying wave; the 
second kind of wave can only propagate at a very narrow frequency range; the third kind of wave 
may propagate in pass bands with small attenuation. Moreover, when the periodic viaduct is sub-
jected to passband seismic waves, the disturbance will propagate over a very long distance and the 
mode as well as attenuation of the wave motion far from the source is determined by the characteris-
tic wave with the smallest attenuation. When the periodic viaduct is subjected to stopband seismic 
waves, the disturbance will restricted to the forced vibration region. 

INTRODUCTION 
Viaduct structure is effective to solve the displacement and settlement of soft ground in the high-
speed rail, and widely used in engineering. In order to facilitate the design and construction, viaduct 
structure generally have equal span, therefore, when the distance between adjacent piers of multi-
span viaduct structure is constant, it can be considered as periodic structure, the basic element con-
sists of three parts: a pier, two longitudinal beams and beam–beam spring, beam–pier springs. 
Research [1, 2] shows that periodic structure has a significant vibration characteristics, that is,  
energy band exists in periodic structure, when elastic wave propagate in periodic structures, vibra-
tion within certain frequency range cannot be passed, called band gap; and vibration within certain 
frequency range can be passed, called pass band. It provides a new idea for the seismic design and 
vibration control by using vibration characteristics of periodic structures. For example, designing ra-
tional geometry and material parameters of the periodic viaduct, it ensure the main seismic waves are 
in pass band of the viaduct structure itself, otherwise, greater energy seismic waves pass difficultly 
the viaduct structure, causing sharp energy increase and structural damage. So considering the ener-
gy band principle of periodic structures, the seismic design and vibration control measures can be 
achieved by adjusting the structure itself, no other additional structures. 
At present, there are more seismic design methods about viaduct, such as: the response spectrum 
method [4, 5], the earthquake time-history analysis [6, 7] and random vibration method [8, 9]. 
Above methods are generally to simplify viaduct as single degree of freedom system or multi-degree 
of freedom system, seismic wave simulated by standing wave, the corresponding vibration control 
equations obtained and solved. Clearly, the analysis of standing wave cannot reflect the propagation 
characteristics of vibration wave in the periodic viaduct, and when seismic wave causing structural 
vibration, the first excited vibration is viaduct piers in soft foundation, the seismic energy input to the 
viaduct structure varies with the distance from the viaduct pier and vibration source location, showed 
nonlinear spatial distribution [10, 11]. 
Therefore, it is necessary to establish mathematical model which can reflect propagation characteris-
tics of non-uniform seismic wave in the periodic viaduct, providing theoretical basis for seismic de-
sign of the viaduct structure. 

5th International Conference on Civil Engineering and Transportation (ICCET 2015)

© 2015. The authors - Published by Atlantis Press 1138



In the paper, in order to deal with the non-uniform seismic excitation of the piers in multi-span via-
duct structure, the Floquet transform method is introduced to decompose the non-uniform seismic 
excitation into a set of spatially harmonic waves. The periodic viaduct is assumed to be composed of 
an infinite number of spans, and each span is supposed to consist of a pier, two longitudinal beams 
and beam–beam spring, beam–pier springs. For the in-plane vibration of the viaduct, the eigen equa-
tion of the periodic viaduct in the wave-number domain is obtained by invoking the periodic condi-
tion of the viaduct and using transfer matrix method. By means of the inverse Floquet transform, the 
space-domain vibration characteristics of the periodic viaduct to non-uniform seismic waves can be 
retrieved, and the influence caused by the characteristic wave propagating in periodic structures and 
the different seismic waves discussed. 

 

FLOQUET TRANSFORM METHOD AND PERIODIC VIADUCT MODEL 
The displacement amplitude in the bottom of the piers vary with the different spatial locations of 

periodic structure piers in the action of seismic waves, and the displacive phase transition between 
adjacent piers is uncertain, thus, the periodic viaduct structural dynamic response is caused by a se-
ries of non-uniform waves, which cannot be directly used to analysis periodic viaduct. Therefore, the 
Floquet transform method is introduced to convert the non-uniform waves to spatially harmonic 
waves. For periodic viaduct in-plane vibration, L is assumed a lattice vector cycle of adjacent lattice 
points in the one-dimensional direction, according to literature [13], lattice vector R can be ex-
pressed by nLe=R , where, e is basis vector of the one-dimensional direction. If ( ) ( )f f nL=R is dis-
crete spatial domain functions of one-dimensional vector , the Floquet transform and inverse trans-
form are defined as follows [14]， 
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Where，κ  is the number of lattice waves, the superscript "^" means wave-number domain. 
  According to the formula (1), the Floquet transform of discrete spatial sequence func-

tion [( )f m n L+  can be expressed as, 
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  Considering the viaduct wave field solution under the action of seismic wave, the Fourier trans-
form between time t and frequency domainω are defined as follows: 
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where, the superscript "-" indicates the frequency domain. 
Using equations (2) and (3), the viaduct structural dynamic response under seismic waves can be 

transformed into harmonic wave dynamic response of frequency domain - wave number domain, its 
amplitude is ˆ( )f κ . 

Fig. 1 shows periodic viaduct structure with infinite number of spans, track, track plates and beam 
of each span are simplified for the left or right horizontal beam, connected by a pier, piers supported 
on a rigid semi-infinite saturated soil body, track connecting the left and right horizontal beam simu-
lated by spring, the jointing element between piers and the left or right horizontal beam simulated al-
so by springs, therefore, each unit of periodic viaduct includes a pier, two horizontal beams and three 
springs. 
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  Considering periodic viaduct in-plane vibration under the seismic wave, according to Euler-
Bernoulli beam theory [13], for the pier of n-span element of viaduct, its motion equations in fre-
quency domain - wave number domain are as follows, 
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where, dE , dρ , dA and dI are respectively elastic modulus, density, cross-sectional area and rota-
tional inertia of piers, ( )ˆ n

du and ( )ˆ n
dv are respectively axial and tangential displacement of piers in fre-

quency domain - wave number domain. 

 
 Fig.1 A schematic illustration of a periodic viaduct with spring junction subjected to 

seismic wave 
For the pier of n-span, the state vector ( )ˆ ( , )n

d zκψ of arbitrary position Z is composed of displace-

ment vector ( )ˆ ( , )n
d zκq and internal force vector ( )ˆ ( , )n

d zκf , its expression is,  
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  When the periodic viaduct belongs to in-plane vibration under the seismic wave, viaduct hori-
zontal beams are also in-plane vibration, Euler-Bernoulli beam theory [13] can be used, the motion 
equations of horizontal beam in frequency domain - wave number domain are as follows, 
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where, bE , bρ , bA and bI are respectively elastic modulus, density, cross-sectional area and rotational 
inertia of horizontal beams, 

( )ˆ n
bu and ( )ˆ n

bv are respectively axial and tangential displacement of horizon-
tal beams in frequency domain - wave number domain. 

According to Euler-Bernoulli beam theory [13], Transfer matrix of pier and horizontal beam 
can be deduced. 

For beam-beam junction of n-span, assuming ( )t
tk , ( )s

tk and ( )b
tk are respectively axial compression 

stiffness, shear stiffness and rotational stiffness of beams-beam junction spring, then the axial 
force ( )ˆ ( )n

tN κ , shear force ( )ˆ ( )n
tQ κ  and bending moment ( )ˆ ( )n

tM κ of beams-beam junction spring in fre-
quency domain - wave number domain are expressed as, 
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where, 0− and 0+ are respectively the left and the right of the junction spring. 
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DYNAMIC RESPONSE OF A PERIODIC VIADUCT IN-PLANE VIBRATION 

Using Equation (2), the displacement vector ( )ˆ ( , )n
d dLκq at the bottom of viaduct pier can be de-

duced under the seismic waves, through the transfer matrix of pier, the displacement vector 
( )ˆ ( ,0 )n
d κ +q and the internal force vector at the top of pier can be deduced, 
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Formula (7) is expressed in matrix form, 
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In terms of equations (6)~(9), the internal force vectors of the left and the right beam in n-span 

unit are deduced, 
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 The characteristic equation of periodic viaduct in-plane vibration can be obtained,  
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where, ακ is complex wave number of wave propagation in periodic viaduct, the real part means 
the phase transition of lattice wave, and the imaginary part indicates wave decay in periodic viaduct 

Using formula (11), the state vector of the left beam can be got in the frequency domain - wave 
number domain,  

then by the formula (1), ( ) ( , / 2)n
b b bnL L−ψ in the frequency domain - spatial domain can be obtained 

by means of the inverse Floquet transform.  
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NUMERICAL RESULTS 
  In order to research the dynamic response of periodic viaduct under non-uniform seismic wave, 

as shown in Fig.1. The vibration source adopts unit circular harmonic loads in saturated soil to simu-
late seismic wave field. The coordinate of unit circle center ( , ,s s sx y z ) is (0.0, 20.0 m, 10.0 m), radius 
R is 0.5, load amplitude Fz is 1.0N. Saturated soil parameters are as follows, 7 22.0 10  N/mµ = × ，

2.0a∞ = ， 7 24.0 10  N/mλ = × ， 0.97α = ， 6 31.94 10   kg/m spb = × ⋅ ， 8 22.4 10  N/mM = × ， 0.4φ = ，

3 32.0 10  kg/msρ = × ， 3 31.0 10  kg/mfρ = × . 
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Using equation (12), characteristic wave of periodic viaduct in-plane vibration can be obtained, 
shown in Fig. 2. 
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Fig. 2  The energy bands for the characteristic waves of the periodic viaduct undergoing 
in-plane motion 

 
  As is shown in Fig.2, there are three kinds of characteristic wave when the periodic viaduct un-

dergoes in-plane motion, the distribution of their energy bands varies with different frequencies. The 
imaginary part of the first and the second kind of waves is larger, which indicates the first and second 
kind of waves cannot propagate far in periodic viaduct, and vibration waves decay rapidly. 

The imaginary part of the third kind of waves shows alternating pass band and band gap at differ-
ent frequencies, and be smaller than that of above two kinds, which indicates the third kind of waves 
is mainly propagated in viaduct vibration. 

 

CONCLUSION 
  In the thesis, combining the Floquet transform and the transfer matrix method, using the peri-

odicity of viaduct structure, the dynamic response of periodic viaduct in-plane vibration under spatial 
non-uniform seismic wave is analyzed. In the frequency domain - wave number domain, the periodi-
cal structure model of beam-beam and beam-pier connected by springs is established, the transfer 
matrixes of spring junctions, horizontal beams and pier are deduced, the characteristic equation of 
periodical viaduct formed and the vibration control equations of viaduct structure established, finally, 
the solution of spatial domain is got by the inverse Floquet transform. Using numerical examples, the 
propagation characteristics of waves and the vibration characteristics of periodical viaduct in spatial 
non-uniform seismic wave are discussed, the numerical results show that, There are three kinds of 
wave existed in periodic viaduct, the first kind of wave decays rapidly, the second kind of wave 
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propagates only in a limited frequency domain, the third kind of wave can propagate in the pass band 
and decay slowly. 
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