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ABSTRACT: The focus of this paper is to develop a transmission and reflection matrices (TRM) 
method for 3-D layered poroelastic half-space subjected to moving load. Applying the triple Fourier 
transformation, the general solution for the displacements, stress and pore pressure are derived from 
the governing equations of Biot’s theory. considering the continuity conditions at layer interface and 
the boundary conditions at the top surface as well as moving load, the transmission and reflection 
matrices(TRM) method for the layered porous medium is developed .Some numerical example are 
given in this paper. 

INTRODUCTION 
In recent years many high-speed ground transports have been established on the fluid-fill situated 
soil, railroad track move over soft soil surface with high velocity must radiated waves propagate in 
the subsoil and strongly affect the dynamic behavior of the track. In the developing a mathematical 
model of the track, this phenomenon has to be taken into account by including a 3-D model of sa-
tuated subsoil. However the most existing published works on this subject mainly considered that 
subsoil is modeled as a linear elastic or viscoelastic homogeneous or layered half space. the two-
dimensional problem of a line load moving with uniform subsonic velocity over the surface of uni-
form elastic half space was first considered by Sneddon[1,2] in 1951.Cole and Huth[3] considered 
the same problem for a normal line load and obtained solutions for the subsonic, transonic and super-
sonic case. Metrikine and Vrouwenvelder[4] proposed a model for the surface ground vibration due 
to a moving train in a tunnel. Grundmann et al. [5] studied the response of a layered half-space sub-
jected to a single moving periodic load as well as a simplified trainload. The three-dimension problem 
of the steady-state motion of a point load in an unbounded body was considered by Eason et al. 
[6].Mandel and Avramesco[7] investigated the displacement of an elastic half-space subjected to a 
point load moving with constant velocity on its surface. Luco and Barros[8] studied the steady-state 
response of a multi-layered viscoelastic half-space subjected to a buried or surface point moving with 
an arbitrary constant velocity in a fixed horizontal direction. Hung and Yang[9] studied the elastic 
waves in viso-elastic half-space generated by various vehicle loads.. 
The objective of the present paper is directed to the study of the steady-state response of the three-
dimensional multi-layered porouselastic half space subject to a surface moving load with an arbitrary 
constant velocity. The Biot’s dynamic equations are solved by Fourier transform techniques. the 
general solutions for the displacements, stresses and pore pressure et al. are obtained .Using the gen-
eral solutions for displacements, stresses and pore pressure and the continuity conditions at the layer 
interfaces as well as the boundary conditions, the transmission and reflection matrices (TRM) of the 
porous layers surface moving point with an arbitrary constant velocity are derived. The final re-
sponse in time domain is obtained from the frequency-wave-number solution by use of discrete Fast 
Fourier invert transformation. When reduced to some special cases, our fundamental solutions agree 
very well with known results by comparisons with published solution available for simple limiting 
cases (elastic half-spce).  In order to demonstrate the method, two time domain numerical examples 
and corresponding analysis are presented in the paper. 
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GOVERNING EQUATIONS AND THE GENERAL SOLUTIONS 
The constitutive equations for homogeneous porous medium have the form [10],[11] 
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where over dots denote the derivative with respect to the time parameter t; ui and wi(i=1,2,3) are the 
displacement of solid matrix and the fluid displacement relative to the solid matrix, respectively; λ 
and μ are Lame constants; α and M are Biot’s parameters accounting for compressibility of the two-
phased material; ρ and ρf are mass densities of the bulk material and the pore fluid, respectively; m is 
a density-like parameter that depends on ρf and the geometry of the pores; b is a parameter account-
ing for the internal friction due to the relative motion between the solid matrix and the pore fluid. 
The parameter b is equal to the ratio between the fluid viscosity and the intrinsic permeability of the 
medium. If internal friction is neglected then b = 0. 
The constitutive relations can be expressed as 
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Whereθ=ui,j and e=wi,j is solid and fluid strain; σi,j is the total stress component of bulk material; p is 
the pore fluid pressure. 
To solve the problem the equation of motion is Fourier transformed with respect to the timet→ω , 
the Fourier transformed defined by: 
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In this paper, the symbol ^ is used denote t→ω Fourier transformed. Then one can show that appli-
cation of t→ω Fourier integral transforms to Esq. (1) and (2) leads to 
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▽2 is the Laplacian operator defined by 
2222222 zyx ∂∂+∂∂+∂∂=∇         (6) 

From Esq. (2-4) we obtain: 
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From Esq. (7), the following equation can be obtained: 
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Substituting Esq. (7) into Esq. (8) yields: 
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The Double Fourier integral transform of function f(x,y,z) with respect to the two horizontal coordi-
nates x→ξ,y→η are defined by: 
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The symbol -,~and are used denote x→ξ, y→η Double Fourier transformed. The inverse relationship 
is given by 
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Thus, application of the Double Fourier integral transformations to Esq. (9) leads to 
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Note that the radicals ri (i=1, 2 ) are selected such that Re(ri)≥0.  In addition, 
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where L1 and L2 are the dimensionless complex wave numbers associated with the dilatational wave 
of the first kind (fast wave), and the dilatational wave of the second kind (slow wave), respectively. 
Substituting ),,,(~̂ ωηξ zp  from Esq. (13) into the transformed form of Esq. (8) yields: 

zrzrzrzr DeCeBeAe 2121
2121

~̂
χχχχθ +++= −−     (16) 

where 

M
ML

f

fi
i )(2

22

ϑαωρ

ωρϑ
χ

−

−
=    i=1,2             (17) 

Substituting ),,,(~̂ ωηξ zp  from Esq. (13) and ),,,(
~̂

ωηξθ z  from Esq. (16) into the transformed form of 
Esq. (4) and (5) yields: 
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Note that the radical r3 is selected such that Re(r3)≥0 In addition, 
µωρϑρ 22 )( +−= fS                (21) 

where S is the dimensionless complex wave number associated with the rotational wave. Making use 
of the transformed form of the dilatation of the solid 
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ux can be obtained 
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By virtue of Esq. (2) the three total stress components on a plane perpendicular to the z-axis can be 
obtained 
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Using the continuity condition and the radiation condition, the generalized transmission matrices and 
reflection matrices which can be used to evaluate the up-going and down-going wave vectors at the 
j-th porous layer below the source can also be obtained. The up-going and down-going wave vectors 
in j-th layer have the form 
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In terms of the free surface boundary conditions Esq. (3-7a-d), the following relation is obtained 
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All the transmission and reflection matrices used to calculate the wave vectors of j-th layer from the 
source layer vectors have been obtained now. After the wave vectors in the first layer are deter-
mined, it is rather straightforward to obtain all the wave vectors in arbitrary layer.  
 

NUMERICAL RESULTS AND DISCUSSIONS 
The capability of the method to calculated the response of a multi-layered half space to moving point 
load illustrate by the case shown in Fig1, the medium consists of a two layered system will be consi-
dered. The upper is characterized by the Shear modulus of soil μ1=, thickness h1=2.0m,the lower half 
space are μ2=,the other parameters are equate as the first example .the point load moves along the 
positive x-direction over the surface with velocity c=70m/s,the observer is located in the third layer 
at A(x,y,z)=(0,0,1.0m),the displacement components are normalizes according to u*=(μzA/Fz)uz 
where μ=2.0e9 N/m2.for comparison, the result plotted in the figures 2 with dash line. the corres-
ponded elastic solution is compared with the solution of Barro[12].also plotted in the figures. It also 
notice that the multi-layered case exhibits higher frequencies and larger amplitudes than the response 
obtained for a uniform half space with the properties of the underlying half space.  
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Fig.1 Two layered soil model 

 
In the preceding examples, the present approach has been demonstrated to be capable of computing 
the homogeneous or layered medium by a moving load with subsonic and supersonic case.  
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Fig.2  normalized vertical displacement u* 

 

CONCLUSIONS 
Through above analysis and calculation the following conclusion can be drawn. Two-dimensional 
Fourier transformations applied to the time/ frequency and to the space/wave number domains lead 
to simple ordinary differential equations which can be solved analytically. A procedure to obtain the 
steady-state displacements and stresses within a multilayered poroelastic half-space with variable 
stiffness in the vertical generated by a surface moving point load in a horizontal straight line with 
constant speed has been presented. The validity and accuracy of the proposed methodology and as-
sociated computer program have been investigated by comparison with analytical and numerical re-
sult available for simple limiting case. Several features of response of a uniform poroelastic half 
space to surface load moving with constant subsonic, transonic and supersonic velocity have been 
presented. Some examples are given to illustrate typical features of the approach for a layered half 
space. 
The fundamental solution for a moving load problem is of great importance for civil engineering, 
seismology and earthquake engineering. For example, grounding vibrations by surface traffic. 
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