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Abstract: A general differential equation of matrix with variable coefficient is derived for analysis 

of stability of the various bars with continuously varying cross section and different constraints at 

ends, which beneficial for engineering design. 

Introduction 

 In existent methods of analysis of stability of bars with continuously varying cross section, 

only the stability of several kinds of bars with particular shapes can be analyzed. Euler discussed 

columns of shapes, including a truncated cone and pyramid. The stability of bars bounded by a 

surface of revolution of the second degree was discussed by Lagrange.[1] 

In this paper a general differential equation of matrix with variable coefficient is derived for 

analysis of stability of various bars with continuously varying cross section. By means of this 

equation the stability of the various bars with continuously varying cross section and different 

constraints at ends can be analyzed.  

 

Methods and example 

Consider a bar with continuously varying cross section in 

the critical state. The critical load is Pcr。The coordinate axes 

and positive directions of the bending moment and the 

shearing force are shown in Fig. 1.  

The shearing force Q(x) and bending moment M(x) at x 

cross section are, respectively, 
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The deflection y(x) , the rotation angle θ(x) , the bending 

moment M(x) and the shearing force Q(x) at x cross section 

exists the following differential relations: 
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in which I(x) is the moment inertia and EI(x) is the flexural rigidity at x cross section.  

Eq. (2) can be written into the differential equation of matrix  
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The following notations are used: 
























0000

100

0
)(

1
00

0010

)(

crP

xEIxA  

and  TxQxMxxyxX )()()()()(  . 

X(x) is called state variable which expresses the state of the internal force and the 

displacements at x cross section. Eq. (3) can be written into the differential equation which is 

expressed by state variable. 

)()()( xXxAxX                                                  (4) 

It is the differential equation of matrix with variable coefficient. In modern mathematical 

theory of matrix it has been shown that the solution of Eq. (4) is 

)0()()( XxTxX                                                  (5) 

when CX )0( , where T(x) is the transfer matrix which is calculated by the method of 

iteration[2]: 
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where I is the unit matrix. 

Substituting lx   into Eq. (5), the relation of state variables of both ends of bar is obtained: 
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i.e. 
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                                (8) 

Substituting the conditions of constraints at both ends of bar into Eq. (8) ,the critical 

compressive load of bars can be found out.  

 

Example: A bar with continuously varying circular cross-section is shown in Fig.2. Its bottom 

diameter is 
0D  and every section diameters accord with l

x
m

D


 eD 0x
. 

Let 
0

2

EI

Pl
K   in which 

0I  is the moment of inertia at the bottom. 

Then 
2

0

l

EI
KPcr  . 

While 5.0m , its top diameter is 0

-0.5

01 6065.0eDD D . 

Calculation the K values of two situations:  

1) the top end fixed and the bottom end hinged;  

2) the top end hinged and the bottom end fixed.  

The boundary conditions of the top end fixed and the bottom end 

hinged are 
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Using Eq. (8) it can be obtained that 
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Cause )0(M and )0(Q  are not zero, so  
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Likewise, the boundary conditions of the top end hinged and the bottom end fixed are  
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Using Eq. (8) it can be obtained that 
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Cause )0(M and )0(Q  are not zero, so  
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   The calculated K values are shown in Table 1  

 

 

 

 

 

 

 

 

 

 

Table 1. The calculated K values while m=0.5 

Different from the constant section bars, as shown in Table 1, the critical compressive loads of 

bars with continuously varying cross sections have the same boundary conditions but at the 

different ends are different.  

 

Conclusion 

Using the methods in this paper, we can calculate the compressive loads of bars with 

continuously varying cross section easily. And using the methods in my early paper[3] at the same 

time, we can calculate the compressive loads of more complex bars.  
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Iteration 

times  n 

The top end fixed and the bottom 

end hinged 

The top end hinged and the 

bottom end fixed  

10 7.37268138838778454412543 7.47273991004492359349403 

12 6.74931824141975773406656 6.79913891555028959009334 

14 6.79123476880484794557665 6.84310972346347084211993 

16 6.78755586815925818722193 6.83921651904333802960563 

18 6.78779748421229039392066 6.83947399301546075537347 

20 6.78778466588288617394692 6.83946023396047644590350 
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