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Abstract. An identification method based on modal strain energy is proposed to identify the damage of 
a functionally graded (FG) Euler-Bernoulli beam. Based on the strain energy of the FG Euler-Bernoulli 
beam, the expression of element modal strain energy (EMSE) is developed for the two-node beam 
element with three degrees of freedom per node. The finite element method (FEM) is employed to 
compute the element stiffness matrix and the modal parameters of the beam. The EMSE is calculated 
by using the FEM results. On this basis, the damage indicator for the FG Euler-Bernoulli beam is 
defined by way of the change of the EMSE before and after the occurrence of damage. A numerical 
example is given to show the validity of the proposed method for the damage identification of the FG 
Euler-Bernoulli beam. Numerical results reveal that the proposed method has very good capability for 
identifying damage in the FG Euler-Bernoulli beam and is robust to the effects of measurement noise. 

Introduction 
As a new kind of inhomogeneous composite materials, functionally graded materials (FGMs) have 

been the subject of considerable research in recent years. The properties of FGMs vary continuously in 
space, which makes FGMs tailored to a broad range of applications and working environments via the 
design of the material gradients. FGMs beam-like structures, which are very important structural 
components in engineering, have been increasingly used in many fields, such as aerospace, automotive 
engineering, chemical engineering, etc., due to their unique graded feature. In reality, damage often 
takes place in the FGMs beam-like structures, which will reduce the system safety performance. The 
accumulating continually damage is dangerous for the structures in the service life because this damage 
is usually unnoticed and results in a catastrophic structural failure. Therefore, considerable research is 
necessarily undertaken to identify the damage in the FGMs beam-like structures for FGMs application 
in modern engineering. 

The physical properties of a structure, such as mass, damping, stiffness, will be modified when the 
damage occurs in the structure[1]. These modifications will induce the changes in the modal 
parameters such as natural frequencies, mode shapes of the structure. Therefore, the modal parameters 
have been widely used to identify the existence, the location and the extent of damage. Naturally, 
vibration-based damage identification techniques (VBDIT) have been developed extensively for the 
reliable and efficient damage identification. Doebling et al.[2] provided a more thorough review of 
VBDIT for detecting, localizing, and characterizing damages in structures by examining changes in 
measured modal parameters. Strains are more sensitive to a small defect in a structure than 
displacements. Hence, more attention has been paid to the damage identification techniques using 
shape derivatives or strain energy[3-9]. 

Damage identification method which is based on modal strain energy (MSE) has superior in many 
respects such as the sensitivity to local defects, severity estimation, stability and noise resistance 
ability[5-9]. Shi et al.[6] proposed the modal strain energy change ratio method (MSECRM) to 
localize structural damage for the isotropic beam. Their method has higher sensitivity to local damage 
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and very good anti-noise property for identifying damage in the isotropic beam. The main objective of 
this paper is to study the damage identification of an functionally graded (FG) Euler-Bernoulli beam 
based on the MSECRM. The expression of element modal strain energy (EMSE) is developed for the 
two-node beam element with three degrees of freedom per node and then the damage indicator for the 
damage identification of the beam is obtained by way of modal strain energy change ratio. A numerical 
example is given to demonstrate the effectiveness of the proposed method. 

Material Properties of FG Euler-Bernoulli Beam 
Fig.1 shows an FG Euler-Bernoulli simply-supported beam composed of ceramic and metal 

components. The beam has a rectangular cross section of length L, width b and thickness h. The upper 
surface component is pure ceramic and the lower surface component is pure metal. It is assumed that 
the material properties of the beam such as Young’s modulus E and mass density ρ vary continuously 
through the beam thickness according to power-law form[10]. Therefore, the material properties can 
be represented as the following function of the coordinate z: 
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where cP  and mP  are the values of the material properties of the ceramic and metal components of the 
FG Euler-Bernoulli beam respectively, and k is the non-negative power-law exponent denoting the 
material nonhomogeneity through the thickness of the beam.  

The EMSE of FG Euler-Bernoulli Beam 
According to the theory of Euler-Bernoulli beam, the expressions of the displacements, strains and 

stresses are given as 
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Fig. 1 A functionally graded Euler-Bernoulli beam 
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where u0  and w0 denote respectively the axial and the transverse displacement of any point on the 
mid-plane, and t is time. 

Assume the beam is divided into n elements. The total strain energy of the beam can be expressed as 
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where jU is the strain energy of the jth element, i.e., 
1
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Substituting Eqs. (3) and (4) into Eq. (6) gives 
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In-plane and transverse displacement components within a beam element shown in Fig. 2 are 
interpolated from element nodal degree of freedom 
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where shape functions N1 and N4 are one-dimensional linear Lagrange polynomials, N2, N3, N5 and N6 
are Hermitian interpolation[11]. 
 

 
 

Fig. 2  Two-node beam element with three degrees of freedom per node 
 

Substituting Eqs. (8) and (9) into Eq. (7) yields 
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in  which corresponding terms are defined as follows: 
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For the jth element in the ith mode, the EMSE is given as 
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where ( ){ }ir t denotes the generalized modal parameter of the ith mode and can be computed by using 
the finite element method (FEM) [11] 

Damage Indicator Based on Modal Strain Energy Change Ratio 
Based on the finite element model, the MSECRM can be developed to identify the structural 

damage for the FG Euler-Bernoulli beam. The occurrence of damage in a structure results in a local 
stiffness reduction and then modifies the mode shapes in a localized region without changing the mass 
of the structure. From Eq. (15), The EMSE of the jth element in the ith mode before and after the 
occurrence of damage is given as 
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where ( )d  indicates a quantity relating to the damaged states , similarly hereinafter. The location of 
damage is unknown and therefore the original stiffness matrix approximates the damaged one for the 
EMSE of damaged state. Eq. (17) can be rewritten as 
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The element modal strain energy change is given as 

( ){ } ( )( ) ( ){ } ( ){ } ( )( ) ( ){ }1 1
2 2

T Td d
ij i j i i j iU r K E z r r K E z rt t t t   ∆ = −    .                                    (19) 

The modal strain energy change ratio, defined as follows, is chosen to be the damage indicator for 
the jth element in the ith mode, i.e., 

i

i

ij U
ij

U

U μ
ζ

σ
∆

∆

∆ −
= .                                                                                                                           (20) 

where
iUµ∆  and 

iUσ ∆ denote, respectively, the mean and standard deviation of ijU∆ , i.e., 

1

1
i

n

U ij
j

μ U
n∆

=

= ∆∑  and  
( )2

1

1

i

i

n

ij U
j

U

U μ
σ

n

∆
=

∆

∆ −
=

−

∑
.                                                                         (21) 

where n is the number of elements. If the ijζ  for several modes are considered together, the damage 
indicator of the jth element is defined as the mean of ijζ  for a set of first few lower mode shapes, i.e., 
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where jζ  represents the damage indicator of the jth element, m is the number of mode shapes. In this 
study, only the three first lower mode shapes are required since the contribution of the higher mode 
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shapes are insignificant[6]. The largest value of jζ means potential damage location in the FG 
Euler-Bernoulli beam. 

Numerical Example 
A numerical example is presented to test the validity of the proposed method. The example involves 

an FG Euler-Bernoulli simply-supported beam of length L=5m, width b=0.1m, thickness h=0.2m, as 
shown in Fig. 3. The finite element model of the beam consists of 10 elements (2-node beam element 
with 3 degrees of freedom per node). The material properties of the FGM constituents[12] are listed in 
Table 1. Young’s modulus E and mass density ρ vary according to Eq. (1). Element 2 is assumed as the 
damaged element with different levels of damage (its stiffness reduced by 4% and 10%, respectively). 
Four cases of the power-law exponent k, which take the values of 0, 1, 5 and10, are considered.  All the 
finite element analysis is done using ABAQUS standard finite element program. 

 
 

 
 
 
 
 
 
 
 
 
 

Table 1 Material properties of FGM constituents 

Properties Lower surface 
(Steel) 

Upper surface 
(Alumina, Al2O3) 

E( GPa ) 210 390 

ρ( 3kg m ) 7800 3960 

 
Instead of carrying out actual experiment, the generalized modal parameter are simulated using the 

FEM. In the practical measurement, the noises are unavoidable. The FEM-computed generalized 
modal parameter is directly added a Gauss noise for the simulation of  the noise contamination. Hence, 
the generalized modal parameter with noise contamination is defined as 

( )1ij ij i
er r η p= + .                                                                                                                  (23) 

where ijr  is the ith generalized modal parameter in the jth mode with noise contamination, ijr  is the ith 
generalized modal parameter in the jth mode with no noise, iη  is a random number generated from a 
Gauss distribution with mean 0 and standard deviation 1, ep  denotes the level of noise and take the 
values of 0%, 1%, 2% and 5%. 

The damage identification results are shown in Figs. 4 and 5. For four cases of the power-law 
exponent k, the largest values of the damage indicator jζ  are found in element 2 with any levels of 
damage and noise. For the other undamaged elements, all the values of the damage indicator jζ  are 
much less than the corresponding ones of element 2. It means that the damaged element can be 
effectively detected by using the damage indicator jζ . The numerical example shows that the proposed 
method has very good capability for identifying damage in the FG Euler-Bernoulli beam and is robust 
to the effects of measurement noise. 
 

Fig. 3 The element model of damage identification of the FG Euler-Bernoulli simply-supported beam 
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Fig. 5 Damage identification results of FG Euler-Bernoulli beam with damage in element 2 
 (stiffness reduced by 10%) 

Fig. 4 Damage identification results of FG Euler-Bernoulli beam with damage in element 2 
 (stiffness reduced by 4%) 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0%  noise
 1%  noise
 2%  noise
 5%  noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element

(c)  power-law exponent k=5 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(d)  power-law exponent k=10 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(a)  power-law exponent k=0 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(b)  power-law exponent k=1 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

Th
e 

va
lu

e 
of

 d
am

ag
e 

in
di

ca
to

r

Number of element
(c)  power-law exponent k=5 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(d)  power-law exponent k=10 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(a)  power-law exponent k=0 

1 2 3 4 5 6 7 8 9 10
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

 0% noise
 1% noise
 2% noise
 5% noise

T
he

 v
al

ue
 o

f d
am

ag
e 

in
di

ca
to

r

Number of element
(b)  power-law exponent k=1 

1317



 

 

Summary 
An identification method based on MSE has been proposed in this paper for identifying the damage 

of the FG Euler-Bernoulli beam. From the strain energy of the FG Euler-Bernoulli beam, the 
expression of EMSE is developed for the two-node beam element with three degrees of freedom per 
node. ABAQUS standard finite element program is used to compute the element stiffness matrix and 
the generalized modal parameters for the EMSE. Based on the change of the EMSE before and after 
the occurrence of damage, modal strain energy change ratio is used as the damage indicator for the 
damage identification of the FG Euler-Bernoulli beam. The validity of the proposed method is 
illustrated by a numerical example. The numerical results demonstrate that the proposed method has 
very good capability for the damage identification of the FG Euler-Bernoulli beam. Furthermore, the 
unavoidable noise in measurement is modeled by Gaussian noise. With the noise-contaminated 
measurement, the damaged element can be still detected easily. Those numerical results reveal that the 
proposed method is robust to the effects of the measured modal parameters noise. 
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