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Abstract: The phononic crystal (PC) concept is introduced to the floating bridge, in order to reduce 
the flexural vibrations. Four kinds of PC floating bridge models, including the identically hinged and 
two-component rigid connected, section-hinged, cell-hinged cases are defined. The corresponding 
structures with the actual available bridge section size are constructed. And the frequency dispersion 
relations and amplitude frequency responses of these structures are calculated and analyzed. The study 
shows that, the four kinds of PC floating bridges all have good band gap (BG) properties. Due to the 
restraints of foundation, the PC floating bridges have the first BGs from 0Hz to the corresponding 
pivotal frequencies. For the identically hinged and two-component cell-hinged cases, the pivotal 
frequencies are submerged in the adjacent BGs, so they have wide BGs start from 0Hz. Moreover, 
compared with the rigid connected case, the existence of hinges helps to obtain wider BGs with 
stronger attenuation. Finally, we design a combined floating bridge from hinged connecting the 
identically hinged and two-component cell-hinged cells and realize extended wide BGs. 

Introduction 
The floating bridge is a kind of ancient facilities for crossing river. Compared with the permanent 

bridge, the floating bridge could be constructed quickly and not permanently occupy the surrounding 
place. Many floating bridges have been constructed in USA, UK, Canada, Norway, etc., following the 
first modern steel floating bridge which was completed in Istanbul at 1912 [1,2]. The floating bridge 
has very important usage in both civil and military applications, especially for cases of soft river bed, 
high depth of water, as well as the emergency. 

The floating bridge floats on water, and make use of buoyancy of water to support loads. As a kind 
of structure with relatively good flexibility, flexural vibrations caused by vehicles, wind and wave 
would affect its reliability. Many researches have been done in order to investigate its dynamic 
behaviors induced by wave, moving loads and other environmental loads [3-7]. The dynamic behaviors 
and vibration control methods of these widely used structures are constantly concerned. How to 
effectively eliminate the flexural vibrations of floating bridge is a meaningful topic. 

In recent years, the phononic crystals (PCs) which have periodically arrayed composite materials 
have caused much attention [8-11]. PC has many attractive properties, one of them is the existence of 
band gaps (BG), within which there can be no propagation of elastic waves. The BG feature could be 
applied to many fields, such as acoustic insulation [8] vibration reduction [12,13] and vibration control 
[14,15], etc. We believe that the combination of PC and the floating bridge is a possible way to 
eliminate and control flexural vibrations in it, by using the BG properties. 

In this paper, we first define four kinds of PC floating bridge models, and briefly introduce the 
transfer matrix (TM) method for the calculation of frequency dispersion relation and BG ranges. Then 
we construct the corresponding models with the actual available bridge section size, and analyze the 
frequency dispersion relations and amplitude frequency responses of them. Finally, we design a 
combined floating bridge from hinged connecting two kinds of models and realize extended wide BGs. 
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Models of the PC floating bridge 
The floating bridge takes advantage of the law of buoyancy of water to support the loads on it. 

Generally, floating bridge could be simplified as the model of the beam on an elastic foundation. For 
floating bridge, Winkler model [16,17] is an appropriate elastic foundation model and often adopted, 
because water cannot withstand shear and the interaction of buoyancy of water could just be 
considered as lots of springs. The stiffness of foundation of water c=ρg≈1.0×104N/m3, where ρ is the 
density of water, the acceleration of gravity g≈10m/s2. For convenient construction, the floating bridge 
is composed of several same sections. The connection between two adjacent sections could be 
simplified as two types, which are the rigid connection and hinge. Figure 1 shows the models with two 
kinds of connections. 

     
(a)                                          (b) 

Fig. 1. The floating briges modelled by the (a) rigid connected and (b) hinged beams on Winkler 
foundation. 

We consider that a bridge section is simplified as a beam composed of identical homogeneous 
material. So the rigid connected floating bridge is actually an extended homogeneous beam on water. 
And the hinged floating bridge is a periodical structure, because of the periodically hinged positions. 
For the periodicity construction along the propagation direction of flexural vibrations from one end to 
the other, the hinged floating bridge could be considered as a kind of PC. 

Besides the periodicity of hinged position, surely, we could also easily introduce the periodicity to 
the floating bridge from adding another kind of material. Figure 2 shows three kinds of two-component 
PC floating bridges, including one rigid connected case and two hinged cases, after adding the 
periodicity of materials. The periodicities of hinged position and materials give two kinds of hinged PC 
floating bridges, which we call the section-hinged case and cell-hinged case in Fig. 2(b)~(c). 

         
(a)                                           (b)                                           (c) 

Fig. 2. The (a) rigid connected, (b) section-hinged and cell-hinged floationg bridges with the periodicty 
of two kinds of materials. 

So we give four kinds of PC floating bridges above. When we discuss the PC problems, the idealized 
model with infinite periodical cells should be analyzed, in order to obtain the frequency dispersion 
relation and BGs ranges. For infinite structures, we could just analyze the cell, which contains all the 
inforamtions of the whole structure. Figure 3 shows the four cells correspoding to the four kinds of PC 
floating bridges above. 

             
(a)                  (b)                    (c)                      (d) 

Fig. 3. The cells corresponding to the (a) indentically hinged and two-component (b) rigid connected, 
(c) section-hinged, (d) cell-hinged PC floating bridges. 

Although we have different models, actually, each section with indentical material is a homogeneous 
Euler-Bernoulli beam on a Winkler foundation. Based on the TM method for the calculation of the 
flexural vibration frequency dispersion relation of the rigid connected PC beam-foundation system 
[18,19], at each cross section, the rigid connected case has four independent degrees of freedom 
(DOFs), which are the displacement v(x), rotation angle θ(x), flexural moment M(x) and shear force 
Q(x). For a periodic length a, the transfer relation can be written as 

F(a)=TF(0),                                                                                                                                  (1) 
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where F(a)=[v(a) θ(a) M(a) Q(a)]T, F(0)=[v(0) θ(0) M(0) Q(0)]T. 
For the hinged case, the flexural moment could not pass over a hinge and the rotation angles around 

a hinge are not continuous anymore. So the DOFs just become to the displacement and shear force, for 
the hinged PC floating bridges. Applying these two conditions, the transfer relation can be rewritten as 

F’(a)=T’F’(0) ,                                                                                                                             (2) 

where F’(a)=[v(a) Q(a)]T, F’(0)=[v(0) Q(0)]T. 
The eigenvalue problems which contain the frequency dispersion relations of the indentically hinged 

and two-component rigid connected, section-hinged and cell-hinged PC floating bridges could be 
given, after using the Bloch’s theorem [20]. Sovling the eigenvalue problems, the corresponding 
frequency dispersion relations and BGs ranges could be obtained. 

 Results and Discussion 

Band gaps 
We consider the models of PC floating bridges with the actual available section size. The section 

length l=8.0m. The cross section is simplified as a rectangular, which has the width b=8.0m and height 
h=1.5m. So we give the cross sectional moment of inertia I=bh3/12=2.25m4. We choose two kinds of 
materials, aluminum and epoxy resin. The density and elastic modulus of aluminum are ρAl=2730kg/m3, 
EAl=7.76×1010Pa, and these of epoxy resin are ρEp=1180kg/m3, EEp=4.35×109Pa. 

Then, we construct the rigid connected and identically hinged floating bridges with aluminum. The 
identically hinged floating bridge has the periodic length a=8.0m. We also could consider that the 
identically rigid connected floating bridge has the same periodic length, so its frequency dispersion 
relation could be similarly obtained for comparison. Next, we add epoxy resin to the models, and give 
the two-component rigid connected, section-hinged and cell-hinged PC floating bridges. For 
two-component cases, the periodic length a=16.0m. 

We calculate the frequency dispersion relations of the five cases in the frequency range of 0~100Hz 
and wave number range of -2π/a~2π/a. which are shown in the left panels of Fig. 4(a)~(e). For the 
identically rigid connected case, one BG exists, the range is 0~0.25Hz. For the identically hinged case, 
also one BG exists, the range is 0~56.66Hz. For the two-component rigid connected case, there are 
four BGs, which are 0~0.30Hz, 5.31~7.37Hz, 23.09~39.60Hz and 64.58~80.58Hz. For the 
two-component section-hinged case, there are also four BGs, which are 0~0.27Hz, 0.33~23.10Hz, 
27.65~76.58Hz and 89.55~100Hz. For the two-component cell-hinged case, there are three BGs, 
which are 0~5.73Hz, 11.89~33.59Hz and 44.57~80.03 Hz.  

We also consider the actual finite structures. Based on the same numbers of bridge sections, we 
calculate the amplitude frequency responses corresponding to the above five cases, which are shown in 
the right panels of Fig. 4(a)~(e). The five cases are all composed of 12 sections. We apply the harmonic 
transverse displacement impulses which sweeps over the range of 0~100Hz to one end of the finite 
structure, and then get the frequency response at the other end. One can see that, in the BGs ranges, the 
flexural vibrations have distinct attenuations. And evidently, the BGs ranges obtained by frequency 
dispersion relations and frequency response results have a good agreement. So the BGs results could 
be reciprocally verified. 

For an identical beam on Winkler foundation, because of the restraints of elastic foundations, a 
pivotal frequency exists. There is no flexural vibration between 0 Hz and the pivotal frequency. So for 
the identically rigid connected case, one BG with a range of 0~0.25Hz exists. For the PC cases, the 
pivotal frequencies also exist. But due to the different connections and materials, the pivotal 
frequencies are different. Especially for the identically hinged and cell-hinged cases, the pivotal 
frequencies are even submerged in the adjacent BGs. So the two cases have wide first BG which starts 
from 0Hz. Besides the first BG which determined by the foundation constraint, the hinged cases have 
much wider BGs than the rigid connected case. The reason is that the existence of hinge relaxes 
constraints which damages the integrality of the beam in the flexural motion and decreases the flexural 
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motion modes. This causes each dispersion curve being narrow, so the BGs ranges are wider. In 
addition, considering the frequency response results, in the BGs, the attenuations of the hinged cases 
are surely much stronger. That means, in the applications, the hinged PC floating bridge composed of 
just few cells could also have clear BG properties. 
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(a)                                           (b)                                            (c) 
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(d)                                           (e) 

Fig. 4. The frequency dispersion relations (left) and amplitude frequency responses (right) of the (b) 
identically hinged and two-component (c) rigid connected, (d) section-hinged, (e) cell-hinged PC 
floating bridges, as well as the (a) identically rigid connected case. Aluminum is used in the 
one-material cases, aluminum and epoxy resin are used in the two-component cases. The BGs are 
marked as the shadow areas. 

Combined hinged PC floating bridge with extended BG 
It is possible to realize wider BGs, from combining different PC floating bridges with 

complementary BGs [21,22]. According to the BGs ranges of the four PC floating bridge models, 
while the BGs of the identically hinged and two-component cell-hinged cases combine together, we 
could get an extended wide BG which just cover 0~80.03 Hz. So we design a combined floating bridge 
from hinged connecting the three identically hinged cells and six two-component cell-hinged cells, 
which is shown in Fig. 5(a). 

We obtain the amplitude frequency response at the right end, from applying the harmonic transverse 
displacement impulses from 0~100Hz at the left end, which is shown in Fig. 5(b). We also give the 
above frequency responses results of the identically hinged and two-component cell-hinged cases for 
comparison. One can see that, the combined hinged structure has relatively significant BG property. 
Almost all of the flexural vibration impulses in 0~80Hz cannot pass through the structure, except few 
frequencies. The nonoverlapping BGs of the two substructures obviously decrease the opponent’s 
flexural vibrations respectively. So the original flexural vibrations which could propagate in 0~80Hz all 
get attenuations to a certain degree. The extended wide BG would effectively eliminate the flexural 
vibrations in combined hinged PC floating bridge in a wide frequency range. 
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Fig. 5. (a) The floating bridge model constructed from hinged connecting the three identically hinged 
cells and six two-component cell-hinged cells and (b) its flexural vibration frequency responses. The 
frequency responses of the identically hinged and two-component cell-hinged cases are also given for 
comparison. 

Conclusion 
We introduce the PC concept into the floating bridge in order to find the feasible way to eliminate 

and control the flexural vibrations in the floating bridge. We propose four kinds of PC floating bridges, 
including the identically hinged and two-component rigid connected, section-hinged, cell-hinged cases, 
and study the flexural vibration characteristics of the corresponding structures with the actual available 
bridge section size. The frequency dispersion relations and amplitude frequency responses are both 
analyzed. We find that the four kinds of PC floating bridges all have good BG properties. Because of 
restraints of foundation, the PC floating bridges have the first BG from 0Hz to the corresponding 
pivotal frequencies. However, for the identically hinged and cell-hinged cases, the pivotal frequencies 
are submerged in the adjacent BGs. So the two cases have wide BGs start from 0Hz. Furthermore, 
compared with the rigid connected case, the existence of hinge helps to obtain wider range of BGs in 
which the attenuation is also much stronger. According to the BGs ranges of different cases, we design 
a combined floating bridge from hinged connecting the identically hinged and two-component 
cell-hinged cells and realize extended wide BGs. Our study provides a possible effective way to 
eliminate flexural vibrations in the floating bridge. 
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