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Abstract: Based on the properties of Gaussian curvature connection and the theory of differential 
geometry, a sufficient condition for Gaussian curvature connection between two adjacent Bézier 
surfaces is obtained. Next, a new method called Gaussian curvature connection is put forward by using 
the condition. The connection result is better than the connection with continuity of tangent plane, but 
the condition of connection is weaker than that of curvature connection. 

Introduction 
Smooth connection of surfaces is important contents in the computer aided design and computer aided 
manufacturing. Generally speaking, surfaces in real life are not analytic ones, they are usually made by 
piecing several surface patches together, and thus the problems arise on how to make the surfaces 
smooth. Now three methods of smooth connection of surface patches are often used, which are 
connection, connection with continuity of tangent plane (G1continuity) and connection with curvature 
continuity (G2continiuty). Some authors have studied these problems, Kahmann [1] presented the 
condition for G1 continuity connection of two Bézier surfaces along their common boundary 
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Du and Schmitt [2] put forward the method of G1 connection of Bézier surfaces patches around a 
common vertex. Meng [3] once discussed curvature connection of triangular Bézier patches with a 
common vertex, Zhang [4] studied G1 connection of polynomial surfaces around a corner. Li and Liu 
[5] presented a method in search of curvature continuous conditions. Jones [6] gave the corresponding 
method. Shi has introduced and studied some approaches to constructing actual surfaces with Bézier 
surfaces.  In this paper a new method called Gaussian curvature connection is presented, the stitching 
result is better than that of G1continuity, but the condition of connection is weaker than that of 
curvature connection. The method is of some value to the computer aided geometric design.  

The condition for Gaussian curvature connection of Bézier surfaces 
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Where k
nia , and 1

,
+k
nia ),,2,1( ni L= are control points of ),( vur k and ),(1 vur k + respectively. 

If )1,()0,(1 urur kk =+ , 10 ≤=≤ uu , we know that ),(1 vur k + and ),( vur k are connected along their 
common boundary curve, therefore, we have k

ni
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If  the two surfaces connected with G1continuity along common boundary )1,()0,(1 urur kk =+ , we 

have the follwing conditions[7] 
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Conditions in (1) can be written as follows 
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The definition of  Gaussian curvature is  
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From (2),(3) and (4),  if the two surfaces are connected with Gaussian curvature continuity along 

their common boundary )1,()0,(1 urur kk =+ , we have the following equation 
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This indicates that the surfaces are connected with curvature continuity. 
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Accroding to the definition of Bernstein polynormials, we get 
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By using formulas in(7) , equation (6) becomes 
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Therefore, the equation (6) can also be written as 
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Then the coditions for Gausian curvature connction  can be written in the form 
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Acoording to the difference formulas, the conditions for Gausian curvature connctions  can be 
written as follows 
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From (ii), relation between the points of two adjacent surfaces can be written as follows 
   

k
ni

k
ni

k
ni

k
ni

k
i aa

n
ia

n
i

n
ina

n
ina 1,,1,,1

1
1, )1( −−+
+ −−+

−
−++

−
= αγγβαβ , ni ,,2,1,0 L= .                                   (8) 

   
Where ),,1,0(1

1, nia k
i L=+ are the second row points of ),(1 vur k + , From (iii),  the points of ),( vur k satisfy 

the follow equations 
  

k
ni

k
ni

k
ni a

n
i

n
ii

n
inia

n
iia ,1632,231,4 ])1(2)([)1(

−−− −
−

+
−

−+
−

−= ααααα  

k
nia

n
i

n
in

n
ii

n
ini

n
inin

,654321 ])1()(2))(1([ αααααα −
−

+−
−

+
−

−
−−−

−  

k
nia

n
in

n
ini

n
inin

,1522 ])()1)((2[ +

−
−

−
+

−−−
−− ααα k

nia
n

inin
,21

)1)((
+

−−−
+ α ,                    (9) 

ni ,,2,1 K= . 
If ni > , we consider that 0,

r
=k

nia . 

The method of Gaussian curvature connection of surfaces 
Step 1 input the control points along the common boundary according to the practical problems. 
Step 2 determine the coefficients iα )6,,2,1( L=i ) of equations (9) according to actual requirements. 
Step 3 find control points k

nia 1, −  based on the equations (9). 
Step 4 determine the coefficients βα , and γ of equations (8). 
Step 5 find control points 1

1,
+k

ia  based on the equations (8). 
Step 6 give the rest control points of two surfaces according to the actual requirements. 
Then the surfaces are connected with Gaussian curvature continuity along their common boundary. 

Conclusion 
 In this paper we present a new method of connection of Bézier surface, the connection result is better 
than that with G1continuity, but the conditions are weaker than that of curvature connection. The 
method is of some value to the computer aided geometric design.  
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