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Abstract The crack tip fields for anti-plane crack in functionally graded piezoelectric materials 
(FGPMs) under mechanical and electrical loadings are investigated. The elastic stiffness, 
piezoelectric parameter and dielectric permittivity of FGPMs are assumed to be exponential 
function of y perpendicular to the crack with different gradient parameters, respectively. By using 
the eigen-expansion method, the higher order crack tip stress and electric displacement fields for 
FGPMs are obtained. The analytic expressions of the stress intensity factors and the electric 
displacement intensity factors are derived. 

Introduction 

In recent years, piezoceramics have been widely studied and utilized in numerous applications, 
e.g., as displacement transducers, sensors and actuators. The mechanical reliability and durability of 
these materials has become increasingly important. The disadvantage of those materials is that they 
crack at low temperatures and creep at high temperatures. Therefore fracture of piezoelectric 
materials have received much attention. The development of functionally graded materials (FGMs) 
has demonstrated that they have the potential to reduce the stress concentration and to increase the 
fracture toughness. FGMs can be extended to piezoelectric materials to improve its reliability. Most 
of literatures assumed that all material properties of FGPMs are exponential functions of 
coordinates with same gradient parameters. Singh[1] studied the problem of an antiplane crack 
situated in the interface of two bonded dissimilar graded piezoelectric half-spaces under the 
permeable crack assumption. Wang[2] investigated the dynamic response of a center-situated crack 
perpendicular to the edges of the piezoelectric strip subjected to anti-plane mechanical and 
electrical impacts. Han[3] calculated the plane electro-elastic fields in piezoelectric materials with 
multiple cracks. Different from previous analyses, the elastic stiffness, piezoelectric parameter and 
dielectric permittivity of FGPMs are assumed to be exponential function of y perpendicular to the 
crack with different gradient parameters, respectively. In this paper, we extend the Williams’ 
solution to fracture problem of FGPMs and the stress and electric displacement high order fields are 
obtained.  

Basic equations 
Consider a crack in a functionally graded piezoelectric materials under anti-plane shear tractions 
and in-plane electric displacements, as shown in Fig.1. The FGPM is poled in the z direction and 
isotropic in the xoy plane. The present work employs exponential function to describe the 
continuous variations of material properties, 
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where 440c is the shear modulus, 150e is the piezoelectric coefficient, 110ε is the dielectric parameter at 
0x = .  

 

 

 

 

 

 

 

 
 
The governing equations can be written as 
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is the two-dimensional Laplace operator. 

The Higher Order Crack-Tip Field 
The displacement component w  and the electric potentialφ can be expanded as follows[4] 
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where, ( )iw θ  and ( )iφ θ  are eigen-functions. 

Substitute Eq. (3) into Eq.(2). According to the linear independence of 3/ 2r − , 1r − , 1/ 2r −  ,…, /2 2ir − ,…, 
the system of ordinary differential equations are obtained. In the case of electrically impermeable 
crack, the crack surfaces are free of electric charges and the electric displacement inside the crack is 
zero. As the crack surface is free, the boundary conditions are 
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Solving the system of ordinary differential equations, we can obtain the results 
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Fig.1Anti-plane crack in FGPMs 
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where { }ij ij ijA B=A are the undetermined coefficients. 
Substituting Eq. (5)-(10)into Eq.(3), the displacement component w  and the electric potentialφ  
are obtained. 
Then，the stress and the electric displacement components can be obtained 
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The mode III stress intensity factor (SIF) and electric displacement intensity factor (EDIF) of the 
crack tip are defined as 
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Conclusions 

The higher order displacement, electric potential, stress and electric displacement fields for 
exponential FGPMs III-mode crack are obtained in this paper. The results show that the first two 
items of the higher order crack-tip fields of FGPMs have the same mathematical forms as ones of 
homogeneous piezoelectric materials. The gradient parameters appear in the third and higher order 
fields. It is clear that gradient parameters strongly affect the higher order items. Due to coupling 
effect of piezoelectric material, the stress intensity factor and electric displacement intensity factor 
are dependent on both displacement component and the electric potential. 
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