Adsorption of CO₂ on Bi₂MoO₆ (010) surface: A density functional theory study

Yanhua Peng^a, Fenghui Tian^a, Yan Zhang^a and Jianqiang Yu^{a,b}

^a Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province; Faculty of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, China.

^b Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, 18 Tianshui Middle Road, Lanzhou, 730000, China.

^ayhpeng@qdu.edu.cn, tfh@qdu.edu.cn, ^bjianqyu@qdu.edu.cn

Keywords: CO_2 ; Adsorption; Bismuth molybdate (010) surface; Density functional theory Abstract. The adsorption of CO_2 on Bi-end and MoO-end Bi₂MoO₆ (010) surfaces has been investigated by density functional theory (DFT) calculations. The results indicate that CO_2 exhibits physical absorption on both of the two surfaces, and Bi-end surface is more slightly active than MoO-end surface. Our results confirm that Bi₂MoO₆ has the potential for CO_2 decrease from the atmosphere and further conversion.

Introduction

Carbon dioxide (CO₂) as the main greenhouse gas that results from the fossil fuel utilization and human activities, makes global warming and climate change [1,2]. So to reduce the accumulation of CO₂ in the atmosphere is extremely urgent. Photocatalytic conversion of CO₂ into valuable chemicals by using the solar energy is considered as a green and potential strategy [3,4], which not only decreases the concentration of CO₂ in the air, but also use the solar energy at the same time to provide sustainable energy resources.

Semiconductor-based photocatalytic reduction of CO₂ has received an amount of attention due to its potential applications in clean energy and environmental cleanup [5,6]. Among various semiconductors, TiO₂ and Bi₂WO₆ have been demonstrated to exhibit excellent photocatalytic reduction of CO₂ into useful fuels, such as CH₄, CH₃OH and HCOOH [7,8]. Compared to them, the flat-band potential of Bi₂MoO₆ (-0.32 V vs NHE at pH = 7.0) is comparable to TiO₂ (-0.31 V) and Bi₂WO₆ (-0.33 V) [9], and it is more negative than the redox potential of CO₂/CH₄ (-0.24 V) which indicates that the photogenerated electrons of Bi₂MoO₆ can reduce the adsorbed CO₂ to CH₄. However, there are few reports about the photocatalytic conversion of CO₂ into useful fuels by using Bi₂MoO₆ materials. Therefore, it is essential to identify the effect of surface structure of Bi₂MoO₆ on CO₂ adsorption for developing better photocatalysts.

In this work, DFT calculation was performed to investigate the adsorption of CO_2 on Bi_2MoO_6 one of the most experimentally accessed surface, (010) surface [16-17]. Both the Bi-end and MoO-end (010) surfaces were considered. It is shown that these two surfaces can react with CO_2 molecules. The reactivity of Bi-end surface is stronger than that of MoO-end surface. The results will be useful to understand in great detail the chemistry of the Bi_2MoO_6 (010) surface.

Models and Computational Methods

In this paper, all the calculations were carried out by Dmol3 package in Material Studio [10,11]. Exchange-correlation function is used by Perdew-Bruke-Ernzerhof (PBE) of generalized gradient approximation (GGA) [12]. The valence orbital of the atoms are described by the double-numeric-quality basic set with polarization functions (DNP) [13], and the core electrons are substituted by DFT semi-core pseudopotentials (DSPPs) [14]. The geometries are considered to be

converged until the energy difference dropped below 1.0×10^{-4} Ha/atom, the force dropped below 0.02 Ha/Å and the max displacement dropped below 0.05 Å. The optimized lattice parameters of the Bi₂MoO₆ crystal are a = 5.482 Å, b = 16.199 Å, and c = 5.509 Å. They are agreement with the corresponding experimental values: a = 5.4822 Å, b = 16.1986 Å, and c = 5.5091 Å [15]. The results implied that our calculation results were reliable.

The Bi₂MoO₆ (010) surface was simulated by the periodic slab models composed of Bi-O-Mo layers with (2×2) supercell. During the geometric optimization, the six bottom layers were fixed equivalent to bulk structure, while the rest of the atoms were allowed to relax freely. For the free CO₂ molecule, a $10\times10\times10$ Å unit cell was used. There was only threefold coordinated Bi (Bi_{3c}) adsorption site on the Bi-end (010) surface (see Fig.1a), while on MoO-end surface, two adsorption sites were exposed, including Mo_{5c} and O_{2c} (see Fig.1b). The adsorption energy E_{ads} was calculated as following:

 $E_{\rm ads} = E_{\rm CO2} + E_{\rm surface} - E_{\rm CO2/surface}$.

(1)

where E_{CO2} was the energy of an free CO₂ molecule in the vacuum, $E_{surface}$ was the energy of clean (010) surface and $E_{CO2/surface}$ was the total energy of the surface with CO₂ adsorption. According to the equation, a positive value of E_{ads} indicates a favorable adsorption configuration.

(a) Bi-end surface

(b) MoO-end surface

Fig.1 Slab models of Bi_2MoO_6 (010) surfaces: (a) the Bi-end surface, (b) the MoO-end surface. Purple spheres represent Bi atoms, green ones represent Mo atoms and red ones represent O atoms.

Results and discussion

Many experimental results have been to find that the Bi_2MoO_6 with (010) surface exposure exhibited the enhanced photocatalytic performance [16,17]. To correlate surface structures with photocatalytic activity, interaction between CO_2 and (010) surface of Bi_2MoO_6 was examined.

CO₂ adsorption on the Bi-end Bi₂MoO₆ (010) surface

As mentioned above, the (010) surfaces of Bi_2MoO_6 have two different terminated surfaces including Bi layer and MoO layer. We firstly performed the CO₂ interaction with the Bi-end Bi₂MoO₆ (010) surface. In this part, four configurations were calculated including one O atom of CO₂ molecule towards the surface Bi_{3c} vertically (OCO- Bi_{3c} -V), C atom of CO₂ molecule towards the Bi_{3c} horizontally (O₂C- Bi_{3c} -H), two O atoms of CO₂ towards two Bi_{3c} atoms horizontally (CO₂- Bi_{3c} -H) and CO₂ decomposition to CO and O atom on (010) surface (CO+O- Bi_{3c} -D). The adsorption energy for different adsorption configurations are shown in Table 1. We found that molecularly adsorption occurred for CO₂ molecule with the Bi_2MoO_6 (010) surface.

As we can see from Table 1, the adsorption energies of OCO-Bi_{3c}-V and CO+O-Bi_{3c}-D configurations are negative, which indicate that these adsorption cannot occur unless the addition of energy or any other auxiliary conditions. So these configurations are neglected. The adsorption energies for O₂C-Bi_{3c}-H and CO₂-Bi_{3c}-H configurations are 0.083 and 0.196 eV, respectively, which indicate that the CO₂ molecules are favorable to adsorb horizontally on the Bi-end (010) surface. In this configuration, the Bi-end Bi₂MoO₆ (010) surface provides chance to CO₂ molecules to be stayed. This adsorption, although not so strong, still can be a sign of the CO_2 to be decreased from air, if the working condition is slightly enhanced (e.g. not too high temperature). The CO₂-Bi_{3c}-H configuration is the most stable adsorption structure. It is reasonable because two O atoms of CO₂ molecule interact with two Bi_{3c} atoms generating bidentate structure as shown in Fig 2a. While for O₂C-Bi_{3c}-H configuration, CO₂ molecule absorbs via the C atom to form a monodentate structure. Thus, we will discuss the adsorption properties of CO₂-Bi_{3c}-H configuration in details.

Fig.2 Optimized the stable adsorption structures of CO₂ on different terminated surface: (a) bidentate structure of Bi-end (010) surface O₂C-Bi_{3c}-H, (b) tridentate structure of MoO-end (010) surface O₂C-O_{2c}-H. Purple spheres represent Bi atoms, green ones represent Mo atoms and red ones represent O atoms.

Table 1 Adsorption energies for different configurations on the two surfaces		
Systems	Configurations	Adsorption energy $(E_{ads})[eV]$
Bi-end (010) surface	OCO-Bi _{3c} -V	-0.350
	O ₂ C-Bi _{3c} -H	0.083
	CO ₂ -Bi _{3c} -H	0.196
	CO+O-Bi _{3c} -D	-1.411
MoO-end (010) surface	OCO-Mo _{5c} -V	-0.036
	O ₂ C- Mo _{5c} -H	0.056
	O ₂ C-O _{2c} -H	0.170

Note: V denotes the vertical configuration of CO2 molecule toward the surface. H denotes the horizontal configuration and D denotes the dissociated condition.

It is easy to find that there is no obvious structure perturbation for CO₂-Bi_{3c}-H configuration comparing with the surface before CO₂ adsorption. And the bond length of C-O has a little stretch from 1.166 Å to 1.167 Å, and all the atoms of Bi-end (010) surface have not deformed obviously with displacement change less than 0.01 Å. The Bi_{3c} atoms interacting with CO₂ molecule have the most obvious displacement change of only about -0.002 Å. These results indicate that there is a relatively weak interaction between CO₂ and Bi-end (010) surface and CO₂ adsorption does not change the surface structure obviously. The distances of Oa-Bi3c and Ob-Bi3c between CO2 molecule and the surface are 3.653 Å and 3.561 Å, respectively. The distances are much longer than the bond length of Bi-O (2.197 Å). Then we can conclude that there is a physical adsorption occured. Zhou et al. [8] reported that CO_2 dissociation was thermodynamically favorable on the Bi-end Bi₂WO₆ (001) surface which was similar surface structures with Bi-end Bi₂MoO₆ (010) surface. Initially, we consider that the Bi-end Bi₂MoO₆ maybe has the same physicochemical properties as the Bi₂WO₆ materials. However, the results exhibit that CO_2 molecule not favorable to dissociate on the surface. To further clear the possibility of the photocatalytic reduction of CO_2 by using the Bi₂MoO₆ materials, the other terminated surface (MoO-layer) will be discussed.

CO₂ adsorption on the MoO-end Bi₂MoO₆ (010) surface

Then, we investigated the adsorption of CO_2 molecule on the MoO-end Bi₂MoO₆ (010) surface. On this surface, three configurations were considered including one adsorption through O atom of CO_2 towards to the surface Mo_{5c} vertically (OCO-Mo_{5c}-V), one adsorption via C atom to surface Mo_{5c} atoms horizontally (O₂C- Mo_{5c}-H) and another adsorption via C atom to surface O_{2c} atom and two O atoms of CO₂ towards two Mo_{5c} atoms horizontally (O₂C-O_{2c}-H). The adsorption energy for different adsorption configurations are also shown in Table 1. We found that the adsorption energy of CO₂ on the MoO-end Bi₂MoO₆ (010) surface is smaller than that of CO₂ on Bi-end surface.

In OCO-Mo_{5c}-V configuration, the adsorption energy is still negative, so the CO₂ molecules are preferential to horizontally absorb on Bi₂MoO₆ (010) surface whether Bi-end or MoO-end layers. And in O₂C-Mo_{5c}-H configurations, the adsorption energy is 0.056 eV, which indicated the relatively weak interaction between CO₂ and surface atoms. In accordance with the reason of the CO₂-Bi_{3c}-H configuration, we found the adsorption energy of O₂C-O_{2c}-H configuration is 0.170 eV, which is the stable configuration on the MoO-end surface due to the tribendate structure formation. Nevertheless, the adsorption energy is slight smaller than that on Bi-end Bi₂MoO₆ (010) surface (0.195 eV), which indicates that the MoO-end surface is less reactive than the Bi-end surface. The geometry of O₂C-O_{2c}-H configuration was shown in Fig 2b.

It can be seen from Fig 2b that the bond length of C-O has a little change from 1.166 Å to 1.165 Å and the displacement change of all surface atoms is less than 0.02 Å. The Mo_{5c} atoms interacting with CO₂ molecule has only 0.002 Å displacement change and the distance of O atoms of CO₂ to Mo_{5c} atoms are 3.145 Å and 3.500 Å, respectively, which indicate there is no former Mo-O bond broken and no new Mo-O bonds formation. In addition, the length of C-O bond is 2.886 Å, which is further larger than the C-O bond length of carbonate (1.439 Å) [18]. As a result, a molecular adsorption also occurred on the MoO-end Bi₂MoO₆ (010) surface. Compared to the Bi-end surface, the interaction between CO₂ and MoO-end Bi₂MoO₆ (010) surface is slight weaker.

It seems to realize the photocatalytic reduction of CO_2 molecule in theory, but our calculation results indicated that the interaction between CO_2 and Bi_2MoO_6 (010) surface was relatively weak. What is the reason? However, some revealed that the enhanced photocatalytic activity of Bi_2MoO_6 with exposed (010) surface originated from the oxygen defects and in-plane vacancies of MoO-end layer [16]. Thus, further studies of oxygen defects or vacancies need to be performed to reveal the mechanism of photocatalytic reduction of CO_2 on Bi_2MoO_6 materials.

Summary

Using DFT calculation, CO_2 adsorption on the Bi-end and MoO-end Bi_2MoO_6 (010) surface were performed. Calculation results show that the two surfaces have considerable reactivity to CO_2 molecule and physical adsorption occurred on Bi_2MoO_6 (010) surface. Moreover, the Bi-end surface is more active than MoO-end surface. Our results revealed the surface structure of Bi_2MoO_6 is important for CO_2 adsorption, which is useful for further experimental investigations and applications in photocatalysis.

Acknowledgements

This work was financially supported by the China Postdoctoral Science Foundation (2014M551869), Shandong Excellent Young Scientist Research Award Fund (BS2015CL002), and Qingdao Postdoctoral Application Research Fund.

References

- [1] J. Houghton: Rep. Prog. Phys. Vol. 68 (2005), p.1343.
- [2] T. R. Karl, K. E. Trenberth: Science Vol. 302 (2003), p.1719.
- [3] T. Sakakura, J. C. Choi and H. Yasuda: Chem. Rev. Vol. 107 (2007), p.2365.
- [4] M. Mikkelsen, M. Jorgensen and F.C. Krebs: Energy Environ. Sci. Vol. 3 (2010), p.43.
- [5] A. Mukherji, R. Marschall, A. Tanksale, C. Sun, S. C. Smith, G. Q. Lu and L. Z. Wang: Adv. Funct. Mater. Vol. 21 (2011), p.126.
- [6] Z. G. Zou, J. H. Ye, K. Sayama and H. Arakawa: Nature Vol. 414 (2001), p.625.
- [7] N. M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. He and P. Zapol: J. Am. Chem. Soc. Vol. 133 (2011), p.3964.
- [8] Y. Zhou, Z. P. Tian, Z. Y. Zhao, Q. Liu, J. H. Kou, X. Y. Chen, J. Gao, S. C. Yan and Z. G. Zou: ACS Appl. Mater. Interfaces Vol. 3 (2011), p.3594.
- [9] M. C. Long, W. M. Cai and H. Kisch: Chem. Phys. Lett. Vol. 461 (2008), p.102.
- [10] B. Delley: J. Phys. Chem. Vol. 100 (1996), p.6107.
- [11]B. Delley: J. Chem. Phys. Vol. 113 (2000), p.7756.
- [12] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.
- [13] Y. Inada and H. Orita: J. Comput. Chem. Vol. 29 (2008), p.225.
- [14] B. Delley: Phys. Rev. B Vol. 66 (2002), p.155125.
- [15] R. G. Teller, J. F. Brazdil and R. K. Grasselli: Acta. Cryst. Vol. C40 (1984), p.2001.
- [16] Y. Zheng, F. Duan, J. Wu, L. Liu, M. Q. Chen and Y. Xie: J. Mol. Catal. A: Chem Vol.303 (2009), p.9.
- [17] J. L. Long, S. C. Wang, H. J. Chang, B. Z. Zhao, B. T. Liu, Y. G. Zhou, W. Wei, X. X. Wang, L. Huang and W. Huang: Small Vol. 14 (2014), p.2791.
- [18]L. Liu, W. L. Fan, X. Zhao, H. G. Sun, P. Li and L. M. Sun: Langmuir Vol.28 (2012), p.10415.