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Abstract. For investigating the effects of gradient energy coefficients on the void-matrix interface 
thickness during Czochralski silicon single crystal, an established phase field model and the 
corresponding program code were used to simulate the evolution process of a single void. Based on 
the given criterion of interface thickness, sixteen simulating cases were performed to study the 
related influence laws. The results show that the void-matrix interface thickness is influenced by 
both of the gradient energy coefficients of composition and chemical ordering, and the increases of 
gradient energy coefficients contribute to the enlargement of interface thickness.  

Introduction 

    With the vigorous development of electronic industry and deepening of society informatization, 
microelectronic technology plays an increasingly important role at almost every aspect of human 
activities. Silicon single crystal, whose quality determines the development speed and potentiality 
of modern electronic information industry, is the basic material in electronic device manufacture. 
Czochralski (shortly called CZ) crystal growth process is the most common method to obtain 
silicon single crystal in experimental study and practical production. In CZ process, void-type 
microdefects form and evolve with pulling crystal, which influence the Gate Oxide Integrity of 
microelectronic devices. Thus, it is significant to conduct related researches on the dynamics of 
void evolution during CZ silicon single crystal. 

To investigate the dynamics of microdefect evolution and capture the essential features of 
formation and growth of grown-in microdefect in CZ silicon crystal, different theoretically 
analytical models and simulation tools were developed. Kulkarni [1] employed the classical 
nucleation theory and diffusion-limited growth model to predict the microdefect types and their size 
distribution in silicon crystal. Sinno and Brown [2] used discrete rate equations and Fokker-Planck 
equations to describe various sizes of microdefect clusters in CZ silicon single crystal. Dai [3] 
developed a lattice kinetic Monte Carlo model for vacancy aggregation to simulation void growth 
dynamics in silicon single crystal. We also studied the void evolution in the process of CZ silicon 
single crystal using phase field method [4, 5]. 

This paper is concerned of the effects of gradient energy coefficients on the void-matrix 
interface thickness in phase field model, which is the follow-up work and extension of our previous 
work [6, 7], in which phase field simulations of the growth dynamics of single void and double 
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voids during CZ silicon single crystal were reported. Based on the phase field model established 
previously, the influences of the coefficients on the void-matrix interface thickness are discovered 
through simulating the single void growth in the process of CZ silicon single crystal. 

Simulation Model and Calculation 

Phase Field Model. The concerned simulation system is consisted of two phases, that is, the matrix 
phase containing the supersaturated vacancies and the void one. The vacancy concentration field 
cv(r, t) and order parameter field ϕ(r, t) were introduced as phase variables to describe the vacancy 
diffusion and void evolution, where r is spatial position and t is time. In the matrix phase, ϕ = 0, 
while in the void phase, cv = 1 and ϕ = 1. The total free energy function of the system, E(cv,ϕ,T), 
includes the chemical free energy and gradient energy as follows: 

E(cv,ϕ,T) = N∫V(F(cv,ϕ,T)+wg(ϕ)+κv|∇cv|2+κϕ|∇ϕ|2)dV,                              (1)

  
where N is the number of the lattice sites per unit volume of the crystal; F(cv,ϕ,T) is the t
otal chemical free energy; T is the absolute temperature; g(ϕ) is a double-well function relat

ed to phase transition barrier; w is a positive constant; κv|∇cv|2 and κϕ|∇ϕ|2 represent the int

erfacial energy contributed by the gradients of composition and chemical ordering, respectiv
ely, where κv and κϕ are gradient energy coefficients. The form of the total chemical free e
nergy, F(cv,ϕ,T), and double-well function, g(ϕ), are as following, respectively: 

F(cv,ϕ,T) = (1-h(ϕ))fm(cv,T)+h(ϕ)fv(cv),                                          (2)
  

and g(ϕ) = ϕ2-2ϕ3+ϕ4,                                                       (3)
  

where h(ϕ) is a interpolating function; fm(cv,T) and fv(cv) are chemical free energy of matrix phase 
and void one, respectively. They can be got from the following equations: 

h(ϕ) = 3ϕ2-2ϕ3,                                                             (4)
  

fm(cv,T) = (Ef,v-kBTlncv,0)cv+kBT[cvlncv+(1-cv)ln(1-cv)]                             (5)
  

and fv(cv) = (cv-1)2,                                                        (6)
  

here Ef,v is the vacancy formation energy; kB is the Boltzmann constant; cv,0 is the pre-exponential 
factor of the thermal equilibrium vacancy concentration in the matrix cv,e = cv,0exp(-Ef,v/kBT). 

The processes of vacancy diffusion and void evolution were described by Cahn-Hilliard 
conservative field equation [8] and Allen-Cahn non-conservative field equation [9], respectively, i.e. 
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where Mv = Dvcv/ kBT is the vacancy mobility, here Dv is the vacancy diffusivity coefficient; L is the 
free surface mobility. 

Initial Conditions and Parameters. The two-dimensional simulation region was divided into 
isometric grids of 256∆x × 256∆x, where ∆x was grid length. There was an isolated void with a 
radius of 10 x∆  at the center of the solution domain, surrounded by the matrix containing uniform 
vacancies of supersaturated concentration. The initial vacancy concentration and the initial 
temperature were set to 0.02 and 1385K, respectively. In the simulation, periodic boundary 
condition was applied, and other simulation parameters were valued based on Table 1 and their 
physical meanings can be understood in the References [6] and [7]. 

Void-matrix Interface Thickness. In our previous work [6, 7], it was obtained that there was 
an interface of some thickness between void phase and matrix one, shown in Fig. 1. In the interface 
area, 0 < ϕ < 1 and cv, near < cv < 1, where cv, near is the vacancy concentration of the immediate 
vicinity of interface in the matrix. However, it is so difficult for phase field modeling to exactly 
capture the grids nearby the interface whose phase variables are ϕ = 0 and cv = cv, near or ϕ = 1 and cv 

= 1, respectively. Thus, in this paper, we define the total length of counted grids corresponding to 
ϕ∈[0.05, 0.95] as the void-matrix interface thickness, which is similar as the definition of void 
radius in Reference [6]. The schematic diagram for calculating the interface thickness is shown in 
Fig. 2. 

Table 1 The parameters used in the phase-field simulation 
Parameters Value 

Ef,v / eV 4 
∆τ 5.0×10-4 

q / K∙∆τ-1 0.5 
vD%  2 

L%  100 
κv / eV∙l*2 1.0, 2.0, 3.0, 4.0 
κϕ / eV∙l*2 1.0, 2.0, 3.0, 4.0 

w 1 
cv,0 1.0×1011 

 

  
Fig. 1 The order parameter field corresponding to the evolution of void [6] 
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Fig. 2 Schematic diagram of calculating void-matrix interface thickness 

The interface thickness changes with different κv and κϕ were studied during single void growth. 
The results at twenty moments corresponding to the time steps of the multiple of 1500 were 
recorded and counted in each simulation, and their mean value, Lt, ϕ, was calculated and treated as 
the interface thickness under current condition. Besides, for the sake of illustrating the change 
degree of the interface thickness in every simulation, the variance of the twenty thickness values, σth, 
was also calculated. It should be emphasized here that the initial interface thickness was all set to 
2∆x in order to eliminate its influence on the simulation output.  

Results and Discussion 

As seen in Table 2, the values of simulated void-matrix interface thickness, Lt, ϕ, vary in some 
degree with the different gradient energy parameters. With the enlargement of κv and κϕ, Lt, ϕ 
increases and its changing degree is influenced by them. For the sake of illustrating the inner 
relationship between Lt, ϕ and the gradient energy parameters, image visualization was conducted 
that the data listed in Table 2 were transferred into functional image, as shown in Fig. 3. It is seen 
from Fig. 3 (a) that Lt, ϕ is a function of κv and κϕ and its image is approximately a plane in 
three-dimensional space. The image is further fitted into a plane with binary linear function in Fig. 3 
(b), and its mathematical expression is: 

Lt, ϕ = 0.8536κϕ+0.1379κv+2.2071.                                             (9)
  

Table 2 Mean values of the simulated interface thickness, Lt, ϕ     [ x∆ ] 
     κϕ [eV·l

*2] 
κv [ eV·l

*2] 1.0 2.0 3.0 4.0 

1.0 3.0503 4.1806 4.9546 5.6330 

2.0 3.3082 4.3263 5.1406 5.8264 

3.0 3.3332 4.4745 5.2738 5.9633 

4.0 3.4924 4.5615 5.3808 6.0744 
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Fig. 3 Interface thickness, Lt, ϕ, as a function of φκ and vκ  (a) initial three-dimensional 

functional image; (b) fitting three-dimensional functional image 

The variance values of twenty interface thickness values, σth,, obtained in each simulating case 
with certain values of κv and κϕ were listed in Table 3. It is apparent that the variance values are all 
little compared with the values of Lt, ϕ, which indicates that the void-matrix interface thickness 
basically remains invariant during the void growth. Hence, the void-matrix interface thickness does 
not depend on simulating time and only relates to the gradient energy coefficients. Also, it further 
illustrates that it is advisable to choose the mean value of the simulated thickness, Lt, ϕ, as the 
indicator to evaluate the effects of the gradient energy coefficients on interface thickness. 

In Eq. 9, the fitting coefficients in front of κv and κϕ are all positive, which demonstrates that 
the interface thickness, Lt, ϕ, is positively related to the gradient energy coefficients, namely, the 
increase of κv and κϕ cause its enlargement. Basically, the two coefficients can be regarded as the 
weights of κv and κϕ to Lt, ϕ, and 0.8536 > 0.1379 indicates that the influence of κϕ on Lt, ϕ 
overweighs that of κv in same change range.  

Table 3 Variance values of the calculated interface thickness, σth   [( x∆ )2] 
     κϕ [eV·l

*2] 
κv [eV·l

*2]   1.0   2.0  3.0  4.0 

1.0 0.0192 0.0112 0.0065 0.0044 
2.0 0.0212 0.0050 0.0105 0.0098 
3.0 0.0096 0.0069 0.0123 0.0120 
4.0 0.0081 0.0041 0.0081 0.0123 

It is known from Eq. 1, Eq. 7 and Eq. 8 that the increases of κv and κϕ make E(cv,ϕ,T) and 
δE(cv,ϕ,T) enlarge, which strengthens the changing rates to decrease vacancy concentration in 
matrix and increase the region of order parameter varying, that is, the tendencies of vacancy 
diffusion an order parameter changes become stronger. Hence, the void-matrix interface thickness, 
Lt, ϕ, corresponding to the region of order parameter varying increases. Obviously, the relatively 
stronger influence of κϕ on Lt, ϕ is attributed to that the interface thickness is determined by the 
gradient energy coefficients and is characterized by the number of counting grids corresponding to 
the order parameter values in a setting region. Therefore, in simulating void evolution during CZ 
silicon single crystal, the varieties of gradient energy coefficients cause the change of the 
void-matrix interface thickness, but do not affect the law of void growth, so that they can be chosen 
as adjusting parameters to control the interface thickness. 

858



Conclusions  

The effects of gradient energy coefficients on the void-matrix interface thickness have been 
studied using an established phase field model and related program codes for simulating the void 
evolution in the process of Cz silicon single crystal. The interface thickness enlarges with the 
increases of both them, and the effect of the gradients energy coefficient of vacancy concentration is 
relatively stronger compared with the gradients energy coefficient of order parameter. It can obtain 
the reasonable and stable interface thickness to adjust the gradients energy coefficients in simulating 
void evolution during CZ silicon single crystal. 
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