

Elite-Guiding Binary Differential Evolution
Gening Xu1, a, Xingfeng Wang2,b*

1Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
2Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China

axugening@sina.com, bwangxingfeng08@126.com

Keywords: differential evolution; discrete variables; elite-guiding.
Abstract. Differential evolution (DE) is an algorithm highly effective in solving problems with
continuous variables while not applicable to problems with discrete variables. To overcome this
disadvantage an elite-guiding binary differential evolution (EGBDE) is proposed. Inspired by the
mutation with GA which could be dominated by the genes of the fittest chromosomes, a similar
process is added to replace the original mutation of DE. Through simulations of test functions and
Knapsack Problem (KP) EGBDE is proved to be both feasible and efficient in optimizations of
problems with continuous and discrete variables.

Introduction
Differential evolution (DE) is an evolutionary algorithm that operates with differences between

individuals. Through the cooperation and competence of individuals an optimal solution of
problems is found. Compared with other evolutionary algorithms, DE outstands not only in its
extreme robustness in optimizations of non-convex problems, multimodal problems and nonlinear
problems, but also in its fast convergence speed and simplicity in programming.

Currently researches of DE focus mainly on continuous optimization problems. Considering the
many advantages of DE and the massive existence of discrete optimization problems, such as
Knapsack Problem(KP), travelling salesman problems(TSP) and vehicle route planning, it definitely
would be great if DE were applicable to the optimization of discrete problems.

DE is essentially an elite-oriented greedy genetic algorithm. The mutant vector of DE functions
as a disturbance to individuals and with disturbances added to individuals solutions with better
fitness might be expected. So the crux of DE is in formulating an appropriate mutant vector. And
the difficulty of applying DE to discrete problems is also in maintaining the disturbance ability of
the mutant vector. Yichao He[1] proposed a hybrid-encoding method by representing an individual
with both a real code and a binary code. The real code is used in producing the mutant vector before
mapping the vector with the sigmoid function to the binary code. Such a strategy adds to the
complexity of the algorithm and an optimal solution is not always available. Zhifeng Wu[2] put
forward a binary-encoding DE which regards the Hamming distances of individuals as the mutant
vector. Since Hamming distance is not exactly the real-code distance, it is inappropriate to represent
the distinction of individuals with the Hamming distance. Zhigang Wang[3] raised a binary
differential evolution in which the majority-voting rule is adopted while mutation. Yet this approach
is flawed in its randomness while selecting disturbances.

This paper comes up with an elite-guiding binary differential evolution (EGBDE), which
features a unique mutation strategy. In genetic algorithms, the mutant vector could be achieved by
comparing every gene of the fittest individual to the corresponding gene of the selected individuals
and the bits from the first different bit to the end of the gene are then randomly set. The whole
process is named elite guiding. The elite guiding mutation is adopted in EGBDE. With such a
strategy the individuals could be drawn to the finest solutions. Through simulation of test functions
and Knapsack Problem, the effectiveness of EGBDE is confirmed.

International Conference on Manufacturing Science and Engineering (ICMSE 2015)

© 2015. The authors - Published by Atlantis Press 860

Differential Evolution
Differential evolution is a real-code evolutionary algorithm. The initial individuals are randomly

distributed, and each of them being a vector in the searching space. Suppose xi(g) denotes the ith
individual from the gth iteration, and xi(g) falls between the range ,L U

i ix x 
 

 , then

() () () ()() .,...,2,1;,...,2,1,,...,, max11 Txxxx gNPigggg iniii === (1)

where xU

i , xL

i represent the upper and lower limits of the searching space, respectively, and NP
is the size of the population and Tmax is the maximum iteration.

The basic procedures of DE is as follows:
(1) Generate the initial population. The initial individuals are selected from the searching space
according to

() ()().1,00 xxxx L

i

U

i

L

iij rand −+= (2)

(2) Mutation. The mode of mutation varies with different DE algorithms. The most common one is
DE/rand/1/bin, which goes by randomly choosing three individuals out of the population xp1， xp2

， xp3 and p1≠p2≠p3≠i and then the mutant is derived

() ().
321 xxxh jpjpjpij

Fg −+= (3)

where F is a scaling factor.
(3) Cross-over. Through cross-over, a population with more diversities than previous generation
could be expected:

()
() () ()

() () ()
.

,11,0,

,11,0,
1







≠<

=≤
=+

nrandjorrandg

nrandjorrandg
g

px
ph

v
cij

cij

ij
 (4)

where pc is the chance of individuals being crossed over and pc∈[0,1]; rand(1,n) signals an integer
between 1 and n, which is a guarantee that at least one element from the mutant could be chosen.
(4) Selection. The fitness function is used in the judgment of a finer offspring. Assume that the
problem in question is a minimum problem, and then the selection can be expressed:

()
() ()() ()()
() ()() ()() .

1,

1,1
1







≥+

<++
=+

gfgfg

gfgfg
g

xvx
xvvx

iii

iii
i (5)

The iteration loops until the maximum iteration is reached or the allowed tolerance is satisfied.

Elite-Guiding Binary differential evolution
The elite-guiding binary differential evolution (EGBDE) is unique in its mutation, which is a

reference to the mutation in genetic algorithms. The mutation steps of EGBDE are:
(1) Calculate the fitness of the population and pick out the elite(g);
(2) Randomly choose an individual xi(g);
(3) Compare the homologous genes of elite(g) and xi(g) from the first bit to the end till the first

different bit nth is encountered;

861

(4) Randomly set the values of the bits from the nth bit to the end of the gene;
(5) Repeat the steps 3)~4) for the remaining homologous genes in the elite(g) and xi(g).

The elite-guiding mutation is essentially a search in an expanded space that covers the values of
the genes in elite(g) and xi(g). For example, the genes 11001100 and 11011000, which represent
204 and 216 in real code. When processing by the proposed mutation method, the first three bits
remains unchanged and the remaining five bits are randomly set. The result of the mutation is a
gene ranging from 11000000 and 11011111, or a number between 192 and 255, which is apparently
a range that contains 204 and 216.

The distinction between the elite-guiding mutation and the Hamming-distance based mutation
can be found in a next example. Consider the two pairs of genes, the first pair 1100 and 1000 and
the second pair 1100 and 0100. With the hamming-distance based mutation, an exactly the same
process will be done to the two pairs. Yet with the elite-guiding mutation, a search between 8 and
15 will be made for the first pair and a search between 0 and 15 for the second pair. Obviously the
elite-guiding mutation is a strategy that makes more sense.

Simulation of test functions
To explore the efficiency of EGBDE, simulations of test functions are carried out using EGBDE,

BDE[2] and a binary particle swarm optimization[3](BPSO). These test functions, whose optimal
values are all zeros and these values are met only when the variables are set zeros, are as follows:
(1) Sphere function:

() .3,048.2048.2,
1

2

1
=≤≤−= ∑

=

nx xxf i

n

i
i (6)

(2) Rosenbrock function

() () () .3,048.2048.2,2
1100

1

22

2 1 =≤≤−




 ++= ∑ −−

=

niiix xxxxf i

n

i
 (7)

(3) Schaffer function：

() ()() .2,100100,
001.01

5.0
5.0, 22

2

2

1

2

2

2

1

2

213

sin =≤≤−
++

−+
+= nx

xx
xxxxf i

 (8)

(4) Griewank function

() .30,300300,cos
4000 11

2

4
=≤≤−










−= ∏∑

==

n
i

x xxxf i

n

i

i
n

i

i (9)

For EGBDE and BDE, the computing accuracy is set 0.01, and the size of the swarm is 100, with
a maximum iteration of 150. The arguments for BPSO is as given by Kennedy J.Eberhart[4].

Each function is run 30 times. Thus the mean best fitness (MBF) and the standard deviation (SD)
can be derived to precisely depict the efficiencies of these algorithms. Table 1 is an illustration of
the comparison.

862

 Table 1 Comparison of EGBDE, BDE and BPSO

Test Functions Algorithms MBF SD

Sphere
EGBDE 0.000 000 0.000 000

BDE 0.001 033 0.000 003
BPSO 0.000 006 0.000 007

Rosenbrock
EGBDE 0.000 059 0.000 000

BDE 0.026 133 0.002 499
BPSO 0.000 256 0.000 275

Schaffer
EGBDE 0.002 743 0.000 018

BDE 0.013 449 0.000 224
BPSO 0.000 001 0.000 003

Griewank
EGBDE 1.470 977 0.105 469

BDE 9.413 467 3.074 090
BPSO 37.033 964 4.886 305

According to Table 1, the performance of EGBDE is overwhelmingly better than that of BDE,
which is a best proof of the superiority of the elite-guiding mutation to the majority voting rules.
And compared with BPSO, EGBDE demonstrates a higher searching accuracy and stability in all
these test functions, with the only exception of Schaffer.

Simulation of Knapsack Problems
 The Knapsack Problem (KP) is a maximization of the total value of the items packed in the
knapsack while constrained by the knapsack's capacity. The mathematical model is as follows:

() ∑
=

=
n

i
jjn pxxxxf

1
21 ,...,,max

{ }
.

,...,2,1,1,0
.. 1









=∈

≤∑
=

nj

C
ts

x
xs

j

n

i
jj (10)

 An greedy algorithm is applied in the processing of the constrains. All items are ranked according
to their value-volume rate, and for the solutions that exceed the given capacity, drop the item with
the least value-volume rate until the total volume comes down below the limit.

Sample data, provided by Zhang Lin[5], are adopted in the simulation. These data are listed as
below:

{ ,105,110,115,118,120,122,125,130,155,158,160,162,165,180,180,192,198,208,220=P
,20,30,50,56,58,60,63,65,66,69,70,73,75,77,80,82,88,90,95,96,98,100,100,101

}1,1,3,5,8,10,15

{ ,32,35,38,40,32,30,60,22,32,50,48,40,55,50,25,55,50,66,70,72,70,85,82,80=S
}1,2,4,4,10,10,10,15,25,20,10,30,25,20,65,20,50,60,30,45,30,50,22,30,28,25

1000=C
For comparison, BDE and the classical genetic algorithm are also included in the simulation.

Figure 1 is the convergence curves of EGBDE, BDE and GA.

863

Table 2 Comparison of GA, BDE and EGBDE

Test Function Max
Iteration MBF SD

Best solution of 50 times
（total value/total volume）

GA 100 3049.7 335.8547 3090/1000
BDE 20 3082.9 80.9963 3090/1000

EGBDE 20 3080.6 99.8269 3090/1000

 Table 2 is based on performances of the above three algorithms, with each run 50 times. Judging
from Figure 1, BDE and EGBDE converge faster than GA, which is very reasonable. And the total
values produced by BDE and EGBDE are remarkably higher than GA does. Yet EGBDE is slightly
less efficient than BDE in solving Knapsack Problems, which is due to the fact that every gene is
only represented by a single bit, zero or one, and with the elite-guiding mutation, the genes would
stay unchanged or be set randomly. The power of elite-guiding simply vanishes here.

Conclusion
 An elite-guiding binary differential evolution (EGBDE) is proposed in the paper and simulations
of test functions and Knapsack Problems are conducted. Through comparisons with traditional
binary-code algorithms such as BDE, BPSO and GA, the efficiency and stability of EGBDE is fully
proven. Yet similar to the real-code differential evolution, EGBDE is flawed in prematurity and a
slow convergence speed in later iterations.

References

[1] Yichao He, A hybrid-encoding binary differential evolution, Research and Development of
Computer. 9 (2007) pp.1476-1484.

[2] Zhifeng Wu, Differential evolutions and their applications, Doctor's thesis, Beijing Jiaotong
University (2009).
[3] Zhigang Wang, Binary differential evolution and its applications, Research and Application of
Computer Engineering, Vol.18 (2008), pp. 48–50.
[4] Kennedy J.Eberhart, A discrete binary version of the particle swarm optimizer [C]. IEEE
International Conference on Computational Cybernetics and Simulation, 1997,5:4104-4108.

Figure 1 convergence curves of GA, BDE and EGBDE

864

[5] Lin Zhang, Good-point set genetic algorithm, Chinese Journal of Computers, 24 (2001), pp.
917–922.

865

