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Abstract. Differential evolution (DE) is an algorithm highly effective in solving problems with 
continuous variables while not applicable to problems with discrete variables. To overcome this 
disadvantage an elite-guiding binary differential evolution (EGBDE) is proposed. Inspired by the 
mutation with GA which could be dominated by the genes of the fittest chromosomes, a similar 
process is added to replace the original mutation of DE. Through simulations of test functions and 
Knapsack Problem (KP) EGBDE is proved to be both feasible and efficient in optimizations of 
problems with continuous and discrete variables. 

Introduction 
Differential evolution (DE) is an evolutionary algorithm that operates with differences between 

individuals. Through the cooperation and competence of individuals an optimal solution of 
problems is found. Compared with other evolutionary algorithms, DE outstands not only in its 
extreme robustness in optimizations of non-convex problems, multimodal problems and nonlinear 
problems, but also in its fast convergence speed and simplicity in programming. 

Currently researches of DE focus mainly on continuous optimization problems. Considering the 
many advantages of DE and the massive existence of discrete optimization problems, such as 
Knapsack Problem(KP), travelling salesman problems(TSP) and vehicle route planning, it definitely 
would be great if DE were applicable to the optimization of discrete problems. 

DE is essentially an elite-oriented greedy genetic algorithm. The mutant vector of DE functions 
as a disturbance to individuals and with disturbances added to individuals solutions with better 
fitness might be expected. So the crux of DE is in formulating an appropriate mutant vector. And 
the difficulty of applying DE to discrete problems is also in maintaining the disturbance ability of 
the mutant vector. Yichao He[1] proposed a hybrid-encoding method by representing an individual 
with both a real code and a binary code. The real code is used in producing the mutant vector before 
mapping the vector with the sigmoid function to the binary code. Such a strategy adds to the 
complexity of the algorithm and an optimal solution is not always available. Zhifeng Wu[2] put 
forward a binary-encoding DE which regards the Hamming distances of individuals as the mutant 
vector. Since Hamming distance is not exactly the real-code distance, it is inappropriate to represent 
the distinction of individuals with the Hamming distance. Zhigang Wang[3] raised a binary 
differential evolution in which the majority-voting rule is adopted while mutation. Yet this approach 
is flawed in its randomness while selecting disturbances. 

This paper comes up with an elite-guiding binary differential evolution (EGBDE), which 
features a unique mutation strategy. In genetic algorithms, the mutant vector could be achieved by 
comparing every gene of the fittest individual to the corresponding gene of the selected individuals 
and the bits from the first different bit to the end of the gene are then randomly set. The whole 
process is named elite guiding. The elite guiding mutation is adopted in EGBDE. With such a 
strategy the individuals could be drawn to the finest solutions. Through simulation of test functions 
and Knapsack Problem, the effectiveness of EGBDE is confirmed. 

 

 

International Conference on Manufacturing Science and Engineering (ICMSE 2015)

© 2015. The authors - Published by Atlantis Press 860



 

Differential Evolution 
Differential evolution is a real-code evolutionary algorithm. The initial individuals are randomly 

distributed, and each of them being a vector in the searching space. Suppose xi(g) denotes the ith 
individual from the gth iteration, and xi(g) falls between the range ,L U
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where xU

i  , xL

i  represent the upper and lower limits of the searching space, respectively, and NP 
is the size of the population and Tmax is the maximum iteration. 

The basic procedures of DE is as follows: 
(1) Generate the initial population. The initial individuals are selected from the searching space 
according to 

( ) ( )( ).1,00 xxxx L

i

U

i

L

iij rand −+=                                                           (2) 

(2) Mutation. The mode of mutation varies with different DE algorithms. The most common one is 
DE/rand/1/bin, which goes by randomly choosing three individuals out of the population xp1， xp2

， xp3 and p1≠p2≠p3≠i and then the mutant is derived 
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where F is a scaling factor. 
(3) Cross-over. Through cross-over, a population with more diversities than previous generation 
could be expected: 
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where pc is the chance of individuals being crossed over and pc∈[0,1]; rand(1,n) signals an integer 
between 1 and n, which is a guarantee that at least one element from the mutant could be chosen. 
(4) Selection. The fitness function is used in the judgment of a finer offspring. Assume that the 
problem in question is a minimum problem, and then the selection can be expressed: 
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The iteration loops until the maximum iteration is reached or the allowed tolerance is satisfied. 

Elite-Guiding Binary differential evolution 
The elite-guiding binary differential evolution (EGBDE) is unique in its mutation, which is a 

reference to the mutation in genetic algorithms. The mutation steps of EGBDE are: 
(1) Calculate the fitness of the population and pick out the elite(g); 
(2) Randomly choose an individual xi(g); 
(3) Compare the homologous genes of elite(g) and xi(g) from the first bit to the end till the first 

different bit nth is encountered; 

861



 

(4) Randomly set the values of the bits from the nth bit to the end of the gene;  
(5) Repeat the steps 3)~4) for the remaining homologous genes in the elite(g) and xi(g). 

The elite-guiding mutation is essentially a search in an expanded space that covers the values of 
the genes in elite(g) and xi(g). For example, the genes 11001100 and 11011000, which represent 
204 and 216 in real code. When processing by the proposed mutation method, the first three bits 
remains unchanged and the remaining five bits are randomly set. The result of the mutation is a 
gene ranging from 11000000 and 11011111, or a number between 192 and 255, which is apparently 
a range that contains 204 and 216.  

The distinction between the elite-guiding mutation and the Hamming-distance based mutation 
can be found in a next example. Consider the two pairs of genes, the first pair 1100 and 1000 and 
the second pair 1100 and 0100. With the hamming-distance based mutation, an exactly the same 
process will be done to the two pairs. Yet with the elite-guiding mutation, a search between 8 and 
15 will be made for the first pair and a search between 0 and 15 for the second pair. Obviously the 
elite-guiding mutation is a strategy that makes more sense. 

Simulation of test functions 
To explore the efficiency of EGBDE, simulations of test functions are carried out using EGBDE, 

BDE[2] and a binary particle swarm optimization[3](BPSO). These test functions, whose optimal 
values are all zeros and these values are met only when the variables are set zeros, are as follows: 
(1) Sphere function: 
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(2) Rosenbrock function 
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(3) Schaffer function： 
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(4) Griewank function 
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For EGBDE and BDE, the computing accuracy is set 0.01, and the size of the swarm is 100, with 
a maximum iteration of 150. The arguments for BPSO is as given by Kennedy J.Eberhart[4].  

Each function is run 30 times. Thus the mean best fitness (MBF) and the standard deviation (SD) 
can be derived to precisely depict the efficiencies of these algorithms. Table 1 is an illustration of 
the comparison. 
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 Table 1  Comparison of EGBDE, BDE and BPSO 

Test Functions Algorithms MBF SD 

Sphere 
EGBDE 0.000 000 0.000 000 

BDE 0.001 033 0.000 003 
BPSO 0.000 006 0.000 007 

Rosenbrock 
EGBDE 0.000 059 0.000 000 

BDE 0.026 133 0.002 499 
BPSO 0.000 256 0.000 275 

Schaffer 
EGBDE 0.002 743 0.000 018 

BDE 0.013 449 0.000 224 
BPSO 0.000 001 0.000 003 

Griewank 
EGBDE 1.470 977 0.105 469 

BDE 9.413 467 3.074 090 
BPSO 37.033 964 4.886 305 

According to Table 1, the performance of EGBDE is overwhelmingly better than that of BDE, 
which is a best proof of the superiority of the elite-guiding mutation to the majority voting rules. 
And compared with BPSO, EGBDE demonstrates a higher searching accuracy and stability in all 
these test functions, with the only exception of Schaffer. 

Simulation of Knapsack Problems 
 The Knapsack Problem (KP) is a maximization of the total value of the items packed in the 
knapsack while constrained by the knapsack's capacity. The mathematical model is as follows: 
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  An greedy algorithm is applied in the processing of the constrains. All items are ranked according 
to their value-volume rate, and for the solutions that exceed the given capacity, drop the item with 
the least value-volume rate until the total volume comes down below the limit. 

Sample data, provided by Zhang Lin[5], are adopted in the simulation. These data are listed as 
below: 

{ ,105,110,115,118,120,122,125,130,155,158,160,162,165,180,180,192,198,208,220=P  
,20,30,50,56,58,60,63,65,66,69,70,73,75,77,80,82,88,90,95,96,98,100,100,101

}1,1,3,5,8,10,15  

{ ,32,35,38,40,32,30,60,22,32,50,48,40,55,50,25,55,50,66,70,72,70,85,82,80=S
}1,2,4,4,10,10,10,15,25,20,10,30,25,20,65,20,50,60,30,45,30,50,22,30,28,25  

1000=C  
For comparison, BDE and the classical genetic algorithm are also included in the simulation. 

Figure 1 is the convergence curves of EGBDE, BDE and GA.  
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Table 2  Comparison of GA, BDE and EGBDE 

Test Function Max 
Iteration MBF SD 

Best solution of 50 times 
（total value/total volume） 

GA 100 3049.7 335.8547 3090/1000 
BDE 20 3082.9 80.9963 3090/1000 

EGBDE 20 3080.6 99.8269 3090/1000 

  Table 2 is based on performances of the above three algorithms, with each run 50 times. Judging 
from Figure 1, BDE and EGBDE converge faster than GA, which is very reasonable. And the total 
values produced by BDE and EGBDE are remarkably higher than GA does. Yet EGBDE is slightly 
less efficient than BDE in solving Knapsack Problems, which is due to the fact that every gene is 
only represented by a single bit, zero or one, and with the elite-guiding mutation, the genes would 
stay unchanged or be set randomly. The power of elite-guiding simply vanishes here. 

Conclusion 
  An elite-guiding binary differential evolution (EGBDE) is proposed in the paper and simulations 
of test functions and Knapsack Problems are conducted. Through comparisons with traditional 
binary-code algorithms such as BDE, BPSO and GA, the efficiency and stability of EGBDE is fully 
proven. Yet similar to the real-code differential evolution, EGBDE is flawed in prematurity and a 
slow convergence speed in later iterations. 
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