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Abstract. The deformation behavior of aluminum alloy 5052 is studied by isothermal hot compression 
in a wide range of temperatures ranging from 300 °C to 450 °C and strain rates ranging from 0.01 s-1 to 
1 s-1. The results show that the peak stress increases with the strain rate while decreases with the 
temperature. In the early stage of deformation, the stress increases with the strain to peak stress, while 
decreases with softening. In this paper, the flow behavior is modeled by a liner function including the 
peak stress and stress softening rate respect to strain. The effect of strain rate and temperature on the 
peak flow stress was established by the Arrhenius-type equation. The softening rate was modeled 
empirically by a multiple linear function of strain rate and temperature. The model parameters were 
obtained by regressions. The constitutive model was verified and good agreement was achieved. 

Introduction 
Aluminum alloys are widely used in modern industry. The study on material’s mechanical behavior 

is essential for application. The constitutive model is the relationship of stress with strain, strain rate 
and temperature when materials deform subjected to loading. Therefore, a thorough investigation on 
the material deformation behavior under different temperatures and strain rates is necessary. So, great 
efforts have been made on the constitutive models in the past decades [1-4].  

The typical researches are [5,6] in which the relationship of flow stress, temperature and strain rates 
was established, though the effect of strain was not considered. Johnson-Cook (JC) model [7] and 
Zerilli-Armstrong (ZA) model [8] are the widely accepted models describing strain hardening 
properties. JC model is empirical and ZA model is dislocation-mechanics based. In ref [9], a strain 
softening function was proposed by the volume fraction of dynamic recrystallization and was employed 
to model the behavior of some alloys. The modified three parameters Voce type function was proposed 
in [10, 11] for aluminum alloys, in which the effect of deformation condition of the parameters are 
modeled by multiple linear function. In this paper, the constitutive equation of aluminum alloy 5052 
under isothermal hot compression is modeled and verified.  

Experiments 
Aluminum alloy 5052 is selected, which is used in aircraft for good plasticity and corrosion 

resistance. The chemical composition is given in Table 1. Cylindrical specimens with a diameter of 10 
mm and a height of 15 mm were machined to carry out isothermal hot compression tests by a 
Gleeble-3500 simulator at temperatures  and strain rates .  

Table 1 Chemical composition (in wt.%) of Al alloy 5052. 
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Here, P is the load, h is the height after compression, 0h  and 0r are the height and radius after 
compression. Figure 1 shows the stress strain curves obtained at different temperatures and strain rates. 
The results show that the flow stress increased with strain rate while decreased with temperature, 
showing a peak flow stress at certain strain and declines due to recovery/recrystallization. 

  
Fig. 1. The measured true stress-true strain curves for Al alloy 5052: (a) 10.01 sε −=& , (b) 10.1 sε −=& , (c) 11 sε −=& . 
Figure 2 present the shape before and after test, complying that Eq. (2) is not accurate for friction 

[12,13]. By ref[14,15], the stress strain curve and be modified by the shape of the specimen:  
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Here flowσ  is the corrected stress, m  is the friction factor as a function of dimension,  
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R  is the equivalent radius assuming volume constant,  
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mb  is the measuring parameter for deformed specimen,  
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Here TR is the top radius of deformed specimen which is calculated by the maximum radius MR , 
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By corrected as Eq. (3), the stress strain curves are shown in Fig. 3. It can be concluded that the 
corrected curves are below than measured. The difference between them increase with the strain. 

 
Fig. 2. The configuration of specimen in compression test. 

 
Fig. 3. The corrected and measured flow stress for Al alloy 5052: (a) 10.01 sε −=& ,(b) 10.1 sε −=& ,(c) 11 sε −=& . 
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Constitutive model 
According to the research by Zener and Hollomon[5], the peak flow stress σ  under hot 

deformation is influenced by strain rate ε&  and temperature T ,  
( ),Tσ σ ε= &                                                      (8) 

However, in Eq. (9) the effect of strain is neglect, so plenty of constitutive equations with strain 
compensation were proposed recently [9-11]. According to the characteristics of aluminum alloys, the 
strain softening behavior due to recovery/recrystallization could be expressed as a linear function of 
peak flow stress σ and strain ε  in this paper:  

( )0flow kσ σ ε ε= − −                                              (9) 
Here = d dflowk σ ε  is the strain softening modulus, 0ε  is the strain with respect to peak stress. 

Because the deformation of metal is effected by activation energy, Z  parameter was introduced as a 
function of strain rate ε&  and temperature T [5,6]: 

  exp QZ
RT

ε  =  
 

&                                 (10) 

Here, R  is the universal gas constant ( -1 -18.3145Jmol K ), Q  is the activation energy ( -1J mol ). 
According to ref [6], for the lower stress level( )0.8ασ < , the relation between the peak flow stress σ  
and Z  parameter is the power law:  

1
nZ Aσ=                                                       (11) 

While for higher stress level( )1.2ασ >  is the exponential law:  
( )2 expZ A βσ=                                              (12) 

And across the entire range of stress, an Arrhenius-type hyperbolic equation was proposed as: 
( )sinh

n
Z A ασ=                                                (13) 

nα β=                                                              (14) 
Here, 1A , 2A , A ,α , n , β  are the materials constants. By substituting Eq. (13) into Eq. (10) gives  

 ( )sinh exp
n QA

RT
ε ασ  = −      
&                                    (15) 

Then by some algebraic operation, the peak flow stress σ  can be written as a function of Z  
1 21 21 ln 1
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For some alloys, when the stress reaching peak, the stress declines due to 
recovery/recrystallization[9-11]. The strain softening rate could be established by a multiple linear 
function of temperature and strain rate on as Eq. (17) in [10]:  

0 1 2 3ln lnk k k T k k Tε ε= + + +& &                                                 (17) 
Here , 0,1,2,3ik i =  are material constants. So the constitutive equations (9,10,16,17) containing a 

linear strain softening and peak stress was concluded below: 
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Results and discussion 
The corrected flow stress in Fig. 3 was used to fit the peak stressσ and softening modulus k  by 

linear regression in Eq. (9) assuming that 0 0.1ε = . The relation among softening modulus k and 
temperature T , strain rate ε&  can be plotted in Fig 4. The effect of temperature and strain rate on 
softening modulus is monotonous. At a certain temperature, softening modulus increased with strain 
rate. While for a given stain rate, softening modulus decreased with temperature. The comprehensive 
effect of temperature and strain rate on softening modulus is bilinear [22,23]. By nonlinear regression, 

0 108.27k = , 1 0.1368k = − , 2 5.0627k = , 3 0.0053k = − . The fitting result show that this phenomenon can be 
modeled by Eq.(17). 

 
Fig. 4. The influence of T  and ε&  upon the softening coefficient k  and the multiple linear regression result. 

In order to obtain the correlation of the peak flow stress σ with temperatureT  and strain rate ε& , 
substituting Eq. (10) into Eq.(11) and Eq.(12), the power law equation and the exponential law 
equation can be get as: 

1 expn QA
RT

ε σ  = − 
 

&                                                 (19) 

( )2 exp exp
Q

A
RT

ε βσ= − 
 
 

&                                     (20) 

By taking logarithms of both sides, Eq. (19) and Eq. (20) can be rewritten as: 
( )1ln = ln lnA n Q RTε σ+ −&               (21) 

( )1ln = ln A Q RTε βσ+ −&             (22) 
It can be seen that n and β  under different temperature can be obtained from the slope of the lines in 

the ln - lnε σ& and ln -ε σ& plot, respectively. By linear regression of Fig.5, a series of n , β andα can be get. 
The ασ values can be used to distinguish the stress level.  

  
Fig. 5. Relationships between strain rate and peak flow stress: (a) ln - lnε σ& , (b) ln -ε σ& . 

According to Eq. (21) and Eq.(22), for a given stain rate ε& , /nR Q and /R Qβ can be represented as 
the slope of ln 1 / Tσ − plot and 1/ Tσ − plot. By linear fitting as shown in Fig. 6, the value of α  can 
determined 

/ 0.01615nα β= =                    (23) 
Taking the logarithm of both sides of the Eq. (20) gives 

( ) ( )ln = ln / ln sinhA Q RT nε ασ− +   &                      (24) 
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Differentiating Eq. (24) gives that 
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Fig. 6. Relationships between peak flow stress and temperature: (a) ln 1 / Tσ − , (b) 1/ Tσ − . 

 
By substitute the α value, the relation of ( )ln -ln sinhε ασ  & and ( )ln sinh 1/ Tασ −   can be obtained as 

shown in Fig. 7 and Fig. 8 respectively. The value of Q can be obtained from the multiply of the slopes 
of ( )ln -ln sinhε ασ  & and ( )ln sinh 1/ Tασ −    plots and calibrated as -1213.141 kJ molQ = ⋅ . 

                                
Fig. 7. Relationships between ( )ln -ln sinhε ασ  & .   Fig. 8. Relationships between ( )ln sinh 1/ Tασ −   . 

Taking the logarithm of both sides of the Eq. (13) gives  
( )ln ln ln sinhZ A n ασ= +                             (26) 

The relation between ln Z and ( )ln sinh ασ    is linear and can be shown in Fig. 8. The values of 
ln A and n  can be obtained by the intercept and slope of the ( )ln ln sinhZ ασ−     plots. Then the value of 
A and n can be calibrated as 14 14.1903 10  sA −= ×  and 5.313n =  respectively. Then all the material 
parameters are concluded in Table 2. 

 
Fig. 9. Relationships between ( )ln ln sinhZ ασ−    . 

The validity of the novel constitutive equations for aluminum alloy 5052, comparisons between the 
experimental and predicted flow stress were carried out as shown in Fig. 10. It can be seen that good 
agreement with the experiments was achieved. In Fig.11, the coefficient is 0.9983, implying good 
agreement.  
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Fig. 10. Comparisons between predicted and experimental: (a) 10.01 sε −=& ,(b) 10.1 sε −=& ,(c) 11 sε −=& . 

 
Fig. 11. Correlation between the experimental (corrected) and predicted flow stresses obtained from the new model. 

Table 2 Parameters and values of novel constitutive equation 
-1/ sA  n  

-1/ kJ molQ ×  α  
144.1903 10×  5.313 213.141 0.0161

5 
0k  1k  2k  3k  

108.27 -0.136
8 5.0627 -0.0053 

Conclusions 
The isothermal hot compression tests of aluminum alloy 5052, in a wide range of temperatures 

ranging from 300 °C to 450 °C and strain rates ranging from 0.01 s-1 to 1s-1 were employed to study its 
high-temperature flow behavior.  

1) A novel constitutive equation combining a linear softening term and peak stress was proposed to 
describe the material behavior.  

2)  The peak flow stress were represented by Zener-Holloman parameter including Arrhenius term.  
3)  The effects of strain rate and temperature on the softening modulus was analyzed empirically and 

regressed by a linear function. 
4) The validity of the novel constitutive equations was verified by comparing the experimental 

results and predicted results, and good agreement was achieved. 
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