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Abstract. The expanded F-expansion method was used to construct the evolution wave solutions 
involving parameters for the Complex Ginzburg–Landau equation. The evolution wave solution in 
several forms are shown and the numerical simulation figures are given. 

Introduction 
In recent years, due to the wide applications of soliton theory in natural science, it is important to seek 
more exact solutions of nonlinear partial differential equations, which become more attractive topic in 
physical science and nonlinear science. 

Ravoux et al. [1] studied the discrete analog of the complex cubic Ginzburg–Landau equation 
having pattern formation phenomena in mind. Abdullaev et al. [2] studied the discrete analogue of the 
complex cubic–quintic Ginzburg–Landau equation with a more general form for the nonlinear terms. 
Using a perturbation technique, they found a soliton solution which is valid at small values of the 
dissipative terms for this equation. Efremidis and Christodoulides also studied a different complex 
cubic–quintic Ginzburg–Landau equation [3]. 

The expanded F-expansion method [4,5] was used to construct the evolution wave solutions 
involving parameters for the Complex Ginzburg–Landau equation. The evolution wave solution in 
several forms are shown and the numerical simulation figures are given. 

The description for expanded F-expansion method 
For the nonlinear equation with two independent variables x and t and a dependent variable u is given 
by 

0,...),,,,,( =ttxxxttx uuuuuuG                                                                                        (1) 
u is the evolution wave function to be determined, which can be given as the form 

gtxeutxuu wtkxi −=== − ξξ ,)(),( )(                                                                          (2) 
where k, w, g are constant parameters. gtx −=ξ is a arbitrary function with the variables x and t. Then, 
the Eq. (2) is changed into an ordinary differential equation 

0,...),,,( =ξξξξξξ uuuuG                                                                                               (3) 
We can obtain the solutions from the abover formation. The main steps of the expanded F-expansion 
method are shown. Suppose that the solution of equation (3) can be expressed by a polynomial as 
follows: 
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where f satisfies the second order linear ordinary differential equation in the form 
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The parameter n can be determined by balancing the highest order derivative terms with the 
nonlinear terms in Eq.(3). ii GK , are constants parameter to be determined later. 

Substituting Eq. (4) and (5) into Eq.(3), and collecting all terms with the same power of  f together. 
Equating each coefficient of f  to zero yields a set of algebraic equations for ii GK , . The parameters 

ii GK ,  are obtained from the algebraic equations. Substituting these parameters into Eq. (4) and (2), 
the evolution wave solutions for nonlinear Eq. (1) are obtained. 

Solutions for comples Ginzburg-Landau equations 
We begin with the Complex Ginzburg–Landau equation[6-8] as follow: 

0)1()1( 22 =++∇+− ϕϕϕϕ iaibt                                                                         (7)          
Here, we suppose that 

gtxeutx wtkxi −== − ξξϕ ,)(),( )( .                                                                          (8) 
Substituting Eq. (8) into Eq. (7) and by using gbkik −= 22 ,  Eq.(7) is changed into  

03 =++ TuRuPuξξ                                                                                               (9) 
where .1;;1 22 iaTkbikiwRibP −−=−−=+=  

By considering the homogeneous balance, we obtain n=1 for )(ξu . Then, equation (4) is written as 
;)( 1

110
−++= fSfKKu ξ                                                                              (10) 

Employing Eq. (5), the first and the second derivative for Eq. (10) are given 
;2

11
−′−′= ffSfKuξ  

;))(2( 32
11

−′−′′−′′= ffffSfKuξξ                                                                (11) 
    Substituting equations (10), (11) into equation (9), collecting all terms with the same power of f 
together, equating each coefficient to zero, yields a set of simultaneous algebraic equations as follows: 
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Let the coefficient of if (i=6,5,….1,0) equal to zero, we have 
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Solving the above equations, we obtain the two cases:  

Case(I) 
ia
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)1(;0 110 with the condition 

RPpRpPrqP 218 2222 ++= ; 

Case (II)       0;
1

)1(;0 110 =
+

+
±== S

ia
qibKK   with the condition PpR −= . 

The evolution solutions  for Complex Ginzburg–Landau Equation are obtained by substituting the 
abover cases into Eq. (10), the parameter p, q, r are given [9-11] as the following 

);(;1,2),1( 22 ξsnfrmqmp ===+−=  );(;1,2,21 222 ξcnfmrmqmp =−=−=+−=  
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);(;1,2,2 22 ξdnfmrqmp =−=−=−=    ));(1/()(;4/,2/,2/)2( 222 ξξ dnmsnfmrmqmp +===−=  

Substituting the case (I) and Eq. (10) to Eq.(8), which is written as: 
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with  RPpRpPrqP 218 2222 ++= . 
Substituting the case (II) and Eq. (10) to Eq.(8), which is written as: 
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The real part of the solutions for Case (I) are given as the following: 
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RPpRpPrqP 218 2222 ++= . The simulation of 11),( txϕ  is shown in Fig. 1 with 3.0=m , 5.0w = , 1=k , 
]10,10[−∈x  ]10,10[−∈t , respectively. 

 

        
   
 
 
 
 

 

Fig.1 Simulation for real part 
of 11),( txϕ , 3.0=m , 5.0w = , 

1=k , ]10,10[−∈x  ]10,10[−∈t , 
respectively. 

Fig.2 The simulation for real part 
of 12),( txϕ  is shown with 6.0=m , 

5.0w = , 1=k , ]10,10[−∈x  
]10,10[−∈t , respectively. 

Fig. 3 The simulation for real part 
of 13),( txϕ  is shown with 6.0=m , 

5.0=w , 1=k , ]4,4[−∈x  ]4,4[−∈t , 
respectively. 
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The simulation for real part of 12),( txϕ  is shown in Fig. 2 with 6.0=m , 5.0w = , 1=k , ]10,10[−∈x  
]10,10[−∈t , respectively. 
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with 0=a , ib 2=  and RPpRpPrqP 218 2222 ++= ; The numerical simulation for 13),( txϕ  is shown in 
Fig. 3 with the parameters m, w, k, t, x are given. The fugure is more smooth than the above figures. 

Conclusions 
In this paper, we presented the evolution wave solutions in terms of expanded F-expansion method for 
complex Ginzburg–Landau equation. These equations are very difficult to be solved by traditional 
methods. This present work afirms that the  expansion method is an easy straight forward method to 
solve nonlinear partial differential equations. 
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