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Abstract. Kinds of adjustable windows are flexibly applied in digital filter design and spectral analysis.
But general description of adjustable windows for any window length are aways deficient in time
domain and frequency domian. Moreover, there lacks quantitative comparison of spectra
characteristics among adjustable windows. In this paper, analytic expressions that suit for any window
length were utilized to describe adjustable windows, including the Kaiser, Cosh, Dolph-Chebyshev,
Saramiki and other ultraspherical windows. The spectral characteristics of adjustable windows were
obtained through numerical computation, and their curves were numerically fitted with smple
functions about adjustable parameters. The relative deviations between the computed curves and the
fitted onesare normally lessthan 7 percent. Finaly, detail comparison of spectral characteristics among
adjustable windows were performed from multi-sides. It shows that the Saramiki window has better
overall performance than other adjustable windows by

comparing spectral characteristics.

Introduction

Digital windows are widely used for signal spectral analysis and digital filter design. T.Saramiki has
categorized windows asfixed or adjustable[1]. Window length isthe only alterable parameter for fixed
windows, which consist of Rectangula, Triangular, Hamming, Hanning and Blackman window and so
on. The Dolph-Chebyshev [2], Kaiser [3], Saramiki [4], ultraspherical [5] and Cosh window[6] all
belong to adjustable windows which have other flexible parameters besides window length.

The Dolph-Chebyshev window was first proposed by C.L.Dolph[2] to solve the problem of
designing a radio antenna having optimal directional characteristicy7], it is constructed by using the
well-known Chebyshev polynomials. P.Lynch[8] designed a simple optima filter based on the
Dolph-Chebyshev window to modify the initial data for numerical weather prediction models. The
Dolph-Chebyshev window has explicit analytic expression[9] and equal side-lobes, but this analytic
expression isn’t suitable for even window length. Therefore the corresponding expressiong[8] of
main-lobe width or ripple ratio may also aren’t suitable for even window length.

The analog Kaiser window was proposed by Kaiser[3], and the zeroth-order modified Bessel
function of thefirst kind was suggested to approximate the prolate function] 10] whose coefficients are
difficult to compute. The resulting window, namely Kaiser window, then closely approximates the
prolate spheroidal wave function that provides the greatest concentration of energy at low frequency.
Subsequently, the digital Kaiser window was applied in nonrecursive digital filter design[11] and digital
spectrum analysig 12]. For digital spectrumanalysis, the digital Kaiser window can be simply obtained
from sampling the analog Kaiser window([12], but the discrete Kaiser window isn’t suitable for even
window length, either. A more general expression of digital Kaiser window that suit both odd and even
window length was described by Oppenheim[13], but the analytic expression for calculating the
spectral characteristic parametersweren’t given. Moreover, power series expansions] 6] arerequired in
calculating the modified zeroth-order Bessel function which is presented in the expression.of Kaiser
window.
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The Saramiki window was introduced by T.Saramiki for designing FIR filterg6]. It provides a
better approximation to the discrete prolate functions than Kaiser window, and it also possesses
analytic expressions while no power series expansions are required in calculating its coefficients.

The unispherical window based on the orthogonal polynomials known as the Gegenbauer or
ultraspherical Polynomialg[14] wasfirst discussed by A.G.Deczky[5]. The unispherical window which
is also called ultraspherical window has two other parameters besides window length, and other
window functions can be approximated by this class window, but the given expression[5] only suits
odd window length and it is difficult to compute the window coefficients. An effective method[15] for
generating the ultraspherical window was proposed by S.W.A.Bergen and Antoniou, who later
proposed a method[16] for designning the ultraspherical window that achieves prescribed spectral
characteristics and an efficient method[17] for designing nonrecursive digita filters by using the
ultraspherical window. They aso illuminated that the Dolph-Chebyshev and Saramaki windows are
both particular cases of the ultraspherical window. The coefficients expressions of right-side
ultraspherical window[16] can be applied to both Dolph-Chebyshev and Saramaki window with any
length, but some iterative algorithm are required for computing these expressions.

The Cosh window based on the cosine hyperbolic function was proposed by AvciK and
Nacaroglu[6] who derived this class window by referring to the Kaiser window[ 3], asaresult, they are
similar in time domain representation except that the cosine hyperbolic function is applied instead of the
zeroth-order modified Bessel function. The Cosh window has computational cost advantage compared
with the Kaiser window due to no power series expansion in computing window coefficients, and it
was used to design FIR filters by Harish Kumar, et. a. later[18]. However, the time domain
representation of the Cosh window isn’t suitable for even window length and there are less analytic
expressions for calculating the spectral characteristics.

Besides, though performance comparison between different windows for FIR filter design and
gpectral analysis are familiar in many literatureg19-21], comparative study on the performance of
spectral characteristics particularly among adjustable windows are always scattered and qualitative,
such as, the Saraméki window provides a better approximation to the discrete prolate functions when
compared with Kaiser window[4]; The ultraspherical window can achieve different side-lobe patterns
while others can not[16]; The Kaiser window has better side-lobe roll-off than the Saramiki and
Dolph-Chebyshev windowg 6]; The Cosh window provides better side-lobe roll-off ratio characteristic
for the same window length and normalized width when compared with Kaiser window[6]. However,
clearer and quantitative comparison is lacking. To provide more details to the researchers who may be
interested in adjustable windows, this paper will draw a comparison on spectral characteristics among
adjustable windows. The main work is organized as three parts. (1) The Section Two is to describe
adjustable windows with analytic expressions suitable for any window length; (2)The Section Threeis
to compute and to fit the spectral characteristics of adjustable windows through numerical experiments;
(3) The Section Four isto compare the spectral characteristics of adjustable windows.

General description of adjustable windows

TheKaiser and Cosh window. An analytic expression of the Kaiser window[13] for any
window length is shown as:
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where N is the window length, M = (N -1)/2 , and k is the adjustable parameter, and Io[X] is the
zeroth-order modified Bessal function of the first kind which can be described by the power series
expansion as
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Generally, the total power series expansion was approximated to the sum of part power series for
finite computation cost. From Eq.(1) , an analytic expression of the Cosh window for any window
length is suggested as.
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where o, is the adjustable parameter, and cosh (X) is the cosine hyperbolic function.
Theultraspherical, Dolph-Chebyshev, Saramiki window. An analytic expression of the right-sided
ultraspherical window [17] for any window length is shown as:

w(n) _—p_Ancg’;pl“ ! xa Crrick " (4)
where 0 <n <N- 1, and
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The independent parameter y, can be calculated:
(m)
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where , b21, bt (0.5+k)xN , ki z*, and x”,, which is estimated through some iterative
algorithm[16] , is the largest zero point of the ultraspherical polynomial le- Then there are three
independent parameters N, b and m that determine the ultraspherical window. Surprisingly, the
Dolph-Chebyshev window and Saraméki window are special cases of the ultraspherical windows with
m=0 and m=1 respectively[16]. Moveover, the X, and x,, can be denoted as
0) e p (0}
TN 1) ®)

x,(j)_m =cos(p/N)

Computation and fits of spectral characteristics

The Kaiser window with length N = 11 and adjustable parameter a, =1.1 istaken as an example to

illuminate some spectral characteristics parameters.
The spectral characteristics of window consist of main-lobe width, ripple ratio, side-lobe roll-off
ratio, etc. The main-lobe width, whichisdenoted as B = 2w, is usually defined as the interval between

angular frequency -w, and +w, where the main-lobe of amplitude spectrums decrease to zero[12].
Theripple ratio is defined as the ratio of the maximum amplitude of side-lobes( the first side-lobesin
Fig.1) to theamplitude of main-lobe, and it isdenoted asr, or intheformof R=20Ig(r). The side-lobe

roll-off ratio is defined as ratio of the amplitude. of the furthest side-lobe to that of the first side-lobe,
and it is denoted as sor inthe form of S=20Ig(s). Besides, anew parameter is defined as the ratio of
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the main-lobe energy to whole bands energy in this paper for observing how close a window
approximates to the discrete prolate functions,

a9 M(e_z” ) aw (©)
QW (e™)] dw

Namely it is the ratio of energy concentrating in |w| £w, to total energy in |w|£p , or in the form of
Q=10Ig(q), and W(e") isthe Fourier transform of window coefficients. Obviously, the larger ratio

q isgiven, the closer approximation to the discrete prolate functions will be achieved. The coefficients
and their Fourier transform are computed through numerical experiments, and the frequency interval is
set 0.0001p for calculating W (e™) and fitting the spectral characteristics. For example, the spectral

characteristics of the Kaiser window shown in Fig.1 can be obtained B =1.2246rad/s, R=- 15.0915dB,

S=-7.8122dB, Q=-0.2526dB.
Subscripts ’k’,’c’,’d’,’s’ of spectral characteristics stand for the Kaiser, Cosh, Dolph-Chebyshev,
Saramaki and ultraspherical window( m= 2) respectively, such asthe main-lobe width B, B, By, Bsand,
B2
Kaiser and Cosh window.
Kaiser window. The coefficients of al Kaiser windows with parameters 15£ N £512 and

0.1£a, £15 were computed with MATLAB 7.8.0 according to Eq.(1-2), then the Fourier transforms
and the spectral characteristics were calculated respectively. We set the interval of parameter
a, as 0.1 for computing coefficients of al the windows, and the total power series expansion was
approximate to the sum of 70 orders power series. The black curve that the product of main-lobe width
By and parameter M versus the adjustable parameter a, for every window length N is shown in Fig.2,
and the black curvethat the ripple ratio versus the adjustable parameter k isshowninFig.3. Thereare
498 l?lnack curves both in Fig.2 and Fig.3.
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The closed form formulas of main-lobe width and rippleratio hold for the analog Kaiser window can
be expected to hold for the digital Kaiser window except for small N or small a, [12],

fozi p?+a? (10)
“R, =20Ig ;%&ak?k (12)
Where f,=w,/2pt,, and tsisthe sample interval. The Eq. (10-11) can be converted into

Bkzé p?+a? (12
R, = 20Ig % (13)

The relative deviation between the spectral characteristics computed with Eq.(12-13) and ones
obtained by experiments decrease rapidly when N < 67, and they are lessthan +9% for N < 67 while
less than +2% for N3 67 . Furthermore, the experiment results changed little when the total power
series expansion(2) was approximate to the sum of 80 or 90 orders power series. The curve that the
side-loberoll-off ratio versus N for every a, isshown in Fig.4 where a clear upper bound curve which

was fitted by a green curve exists. The fitted expression is

Sep =80.5N - 724D, (14)

where

_10.0002N? - 0.0814N +0.6540, N £ 200
P T _0.0122N- 6.0257, N >200

The relative deviation between the upper bound of side-lobe roll-off ratio and the fitted one is less
than +1% for N3 25. The black curve of main-lobe energy ratio versus the adjustable parameter a,
for every N is shown in Fig6, and it can be fitted with a green curve which is described of

g 10700 (16)

For any window length N and adjustable parameter a,, the relative deviation between g« and the
fitted oneisless than 0.4869%.

Cosh window. Similarly, we computed the coefficients of all Cosh windows with parameters
15£N £512 and 0.1£a,£15 according to Eq.(3), and theinterval of a, wasalso set as0.1. The red

curve that the product of main-lobe width B, and parameter M versus the adjustable parameter a_ for

every window length N is also shown in Fig.2, and the red curve that the ripple ratio R, versus the
adjustable parameter a, isalso shownin Fig.3. Thered curve that the side-lobe roll-off ratio S versus

N for every a, isshownin Fig.5.
The piecewise of main-lobe width curve can be fitted with

(15)
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1(0.6507a, +6.1132)/M, 0O<a £1

B, ={(1.3396a, +54388)/M, 1<a, £2 (17)

+(L7764a, +3.8584)/M, 2<a £15

For any window length N and adjustable parameter a_, therelative deviation between B, and the
fitted one is less than 6.7763%.
The piecewise of ripple ratio curve can be fitted with
i-2.226%, - 12.9326, 0<a £0.6
R ={-5.4986a, - 10.3859, 0.6<a £5 (18)
{.7.3660a_ - 1.00000, 5<a,£15
For any window length N and adjustable parameter a_, the relative deviation between R. and the
fitted one is less than 6.8637%.
It isinteresting that the upper bound of & is amost the same as the one of S, so the upper bound
S.,up Can be also fitted with the upper bound S, Which is shown as a blue curve.
And, the main-lobe energy ratio can be fitted with
g =10° 00w (19)
For any window length N and adjustable parameter a_, the relative deviation between g. and the

fitted one is less than 0.5473%, and the blue fitted curve is plotted in Fig.6.
Ultraspherical window.
For a fixed N and a prescribed side-lobe roll-off ratio S, one can select the parameter m

appropriately. To generate an ultraspherical window with m and N fixed and a prescribed main-lobe
half width of w,, one can select the parameter x, or appropriately. To generate an ultraspherical
window with m and N fixed and a prescribed ripple ratio R, one can select the parameter x_
appropriately[16]. In other words, the side-lobe roll-off ratio S may be determined by the window
length N and parameter m, and both the main-lobe width B and ripple ratio R may be determined by the
window length N, parameter mand b .

As the side-lobe roll-off ratio Srelatesto m and N except b , we computed the coefficients of all
ultraspherical windows with parameters 15£ N £512 and - 1<m£10 according to EQ.(4) in the
conditionof b =1. Thebound of m issuggested by SW.A. Bergen[16] and theinterval of m was set
as0.01. The curves of the side-lobe roll-off ratio versusthe adjustable parameter m for N=16, N=32
and N = 48 are shown in Fig.7.

Infact, the curve of the side-lobe roll-off ratio versus the adjustable parameter m for every N can be
fitted with function

s=a(N)eMm+¢(N)e'Mm (20)

where a(N), b(N), ¢(N) and d(N) are functions of window length N. Their valuesfor N = 16; 32; 64;
128;%56; 512 are enumerated in Tablel
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Table.1 Vaues of a

Fig. 10. q of ultraspherical window
vs b for someN
N), b(N), c(N) and d(N) for some window length

N 16 32 64 128 256 512
a(N) 0.1557 | 0.06705 | 0.03956 | 0.02701 | 0.02009 | 0.01188
b(N) -3.709 | -5.166 | -6.311 | -7.316 | -8.244 | -9.359
c(N) 0.8409 | 0.954 | 09693 | 09628 | 0.9509 | 0.9319
d(N) -1.032 | -2.021 | -2.896 | -3.712 | -4.493 | -5.305

Therelative deviation between s and the one fitted is less than5.6076% for m£ 0, and the absolute
deviation between s and the one fitted is less than 0.0561 for m>0.

Both the main-lobe width B and ripple ratio R are relate to the window length N, parameter m and
b simultaneoudly. As a result, the computation cost of B and R with different N, m and b is huge,
and it isdifficult to fit the experiment data of B and R with functions of three variablesN, mand b . So

we only try to obtain the main-lobe width B and ripple ratio R of ultraspherical window at some special
cases, suchas m =0, m =1and m = 2. Asweknow, the Dolph-Chebyshev and Saramiki window are

special cases of ultraspherical window with parameter m = 0 and m= 1 respectively.
Dolph-Chebyshev window. The coefficients of all ultraspherical windows with parametersm= 0,
15£N £512 and 1£ b £5 were computed according to Eq.(4), and theinterval of b was set as 0.01.

The black curve of the product of main-lobe width By and parameter N versus the adjustable parameter
for every window length N is shown in Fig.8, and the black curve that the ripple ratio Ry versus the
adjustable parameter b isshownin Fig.9.

The curves of By versus the adjustable parameter b for every window length N can be fitted with

B, =(12.5678b - 0.0001)/N (21)
For any Nand b , the relative deviation between B, and the fitted one is less than 1.2251%.

The close form expressions for the ripple ratio Ry of Dolph- Chebyshev window is given a5 8]:
=T (%) (22)
where[16]

X, 2
XO_Xm_cos(bp/N) (
The expressions equal the following expressions:

Ri =20|9§/TN.1(X0)B (24)

The relative deviation between Rd and the fitted one is less than 2.3602° 10°%. However, the
expression is complex though it is accurate enough. We can approximate it with a linear function for
large window length N. For example,

_1-29.6914b +12.1228, 1£b <15
T 1-27.6316b +8.7251, 15£b <5

For any window length N 3 32 and b , the relative deviation between Ry and the fitted one is less
than 5.1741%.
The curves of gy versus the adjustable parameter b for every window length N can be fitted with

(25)
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- (190N'1+1+D)'1b'8

qu =10 (26)
where

10.1167N - 2.8167, N£25
D={0.0139N - 0.2030, 25<N £45 (27)

{_0.0023N +0.4301, N>45
For small N, the relative deviation between gq and the fitted one is small, for example, less than
6.7486% for N £135. However, the relative deviation become large for large N and little b , for
example, larger than 9.6959% and less than 85.1732% for N>135 and b £1.3.

Saramiki window. Experiments were performed on the Saramiki window in the same way asthe
Dolph-Chebyshev window, and others parameterswere fixed except that the parameter m wasset m=

1. The red curve that the product of main-lobe width Bs and parameter N versus the for every N is
shownin Fig.8, and thered curvethat therippleratio Rsversusis shown in Fig.9. Thefitted expressions
for the main-lobe width of Saraméki window are given as:

B, =(12.5674b - 0.0001)/N (28)

For any N and , the relative deviation between Bs and the fitted one is less than 1.2223%. Similarly,
the ripple ratio Rs can be approximated with a linear function for large N,
_1-27.1126b +13.7514, 1£b <15

T 1-25.8526b +11.9771, 15£b <5
For any N3 32 and b , the relative deviation between Rs and the fitted one is less than 3.9771%.
The curves of qq versus for every N can be fitted with
q = 10 y(z260°)
For any Nand b , the relative deviation between gs and the fitted one is less than 0.2337%.
Ultraspherical window(u=2). Experiments were performed on the ultraspherical window(u= 2) in
the same way, and others parameters werefixed except setting u= 2. The blue curve that the product of
main-lobe width B, and parameter N versus for every N isshown in Fig.8, and the blue curve that the
rippleratio R, versus isshown in Fig.9. The fitted expressions for B is given as.
B, =(12.5673b - 0.0001)/N (31)
ForanyNand b , therelative deviation between B, and thefitted oneislessthan 1.2208%, and the
ripple ratio R, can be approximated with a linear function for large N.
_1-25.3840b +14.7831, 1£b <15
2”1 24.4176b +13.6835, 15£b <5
Forany N3 32 and, therelative deviation between R, and the fitted one isless than 6.5430%. The
main-lobe energy ratio g, can be approximated with
A :10-1/(16.5b8) (33)
For any N and b , the relative deviation between g, and the fitted one is less than 3.4360%, and it
becomes less than 1% for b 3 1.16.

(29)

(30)

(32)

Comparisons of spectral characteristics

Into spectrum analysis, the main-lobe width determines the ability to resolve adjacent spectral lines,
and the ripple ratio determines the leakage or interaction between spectral lineg12]. For beamforming
applications, higher side-lobe roll-off ratio means better performance of reecting far end
interferenceq 6]. In the application of FIR filter design, the main-lobe width mainly determines the
trangition band of filter, and the ripple ratio and side-lobe roll-off ratio commonly determine the ripple
and stopband attenuation. Windows with narrow main-lobe, low ripple-ratio and low side-lobe roll-off
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ratio are expected generally in applications. The performance of spectral characteristics for kinds of

adjustable windows were shown by comparisons.

main-lobewidth versusrippleratio. The experiment results show that the main-lobe width decreases

when the ripple ratio or window length increases for all adjustable windows. The fitted expressions of

these curves that the main-lobe width versus the ripple ratio are given as follows. For Kaiser window,
_j(-0.2434R, +2.9203)/M, R £-40dB

 — |

i(- 0.4774R +6.1352)/M, R, >-40dB
For any N and Ry, the relative deviation between By and the fitted one is less than 5.3448%. For
Cosh windows
_j(-0.2510R, +32979)/M, R, £-40dB
" (- 05296R +5.2544)/M, R >-40B
For any N and R., the relative deviation between B. and the fitted one is less than 6.8170%. For
Dolph-Chebyshev windows,

(34)

(35)

B, =(12.5678b - 0.0001)/N (36)
where
b :Ecos'l COS@D/;E_T ] l)H_ (37)
cosh 20 (V)8
e N-1 %]

For any N and rq, the relative deviation between By and the fitted one is less than 1.2553%, but the
expression is complex. For large N, asimpler linear function can be adopted to fit By
}(3.9684- 0.4548R,)/N, R, £-32.4143dB

d _.I.

§(5.1312- 0.4233R,)/N, R, >-32.4143dB

For any N3 32 and Ry, the relative deviation between By and the fitted one is less than 3.2001%.
For Saramiki windows with N 3 32,
_}(5.9437- 0.4840R )/N, R £-60dB

s — |

1(6.0200- 0.4840R)/N, R >-60dB
Forany N3 32 and R,, therelative deviation between Bs and the fitted oneislessthan 3.6752%. For
the ultraspherial windows (m=2) with N3 32,
_j(6.9095- 05175R,)/N, R, £-60dB

w2 — _|_

§(7.5109- 0.5093R,)/N, R, >-60dB

For any N3 32 and Ry, the relative deviation between B , and the fitted one is less than 5.9722%.
It isfound that By < Bs < By < B; < B, if given afixed window length and a fixed ripple ratio. The
curves of mainlobe width versus ripple ratio of adjustable windows for a fixed window length N=63 is
shownlin Fig.11,

(38)

(39)

(40)

The black curve for B, | 9 S
The red curve for 5, O 24
The bule curve for By 1 -10
The green curve for B, 4 20

é 0.6k N...:E&;;Ilox\ curve for B, 2-30 'Skw
£ o5t S - ;—40 %

p! S ul
-5(
-60F Y Y
704

-120 100 80 60 40 20 0 SO0 100 R0 0 2020
N=63, R(dB) N=63, R(dB)

Fig. 11. B vsR of adjustable windows Fig. 12. SvsR of adjustable windows
for the fixed N=63 for the fixed N=63
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Fig. 13. SvsN of adjustable windows Fig. 14. qvsB of adjustable windows

for the fixed N=63

Note that the By becomes closer to Bs as the window length increases. For example, the relative
difference between By and B is less than 0.0075% for the fixed window length N=512 and any fixed
ripple ratio.

side-lobe roll-off ratio versus ripple ratio. The curves of S versus R, and S versus R, are not
regular for some fixed N, and the ones of S versus Ry, S versus Rs and Sy, versus R, are horizontal
lines for any fixed N. Windows with N = 63 are taken as examplesin Fig.12

However, the upper bound of S and S are certain for every N, and it isfound that the §;, S and Sy
areindependent with ripple ratio for fixed window length. The §;, S, S as well as the upper bound of
S and S for every N are shown in Figure.13.

Asshownin Figl3, the curve of S;versus N are almost the same as the ones of the upper bound of
S and &, and therelative deviationsamong themisless than 0.001% . Besides, we can find thereis S,
< S < §for any fixed N.

main-lobe energy ratio versus main-lobe width. The main-lobe energy ratio has positive
correlation with the main-lobe width, and the former gets to one as the latter increases. An exampleis
shown in Fig.14. For any fixed window length and main-lobe width, the main-lobe energy ratio can be
fitted as the following. For Kaiser windows,
g =1000e "= (41)

The relative deviation between g« and the fitted one is less than 5.5937% for any M (or N) and By,
and it becomes less than 1% for B,>1 rad/s. For Cosh windows,

q =10 0.0436 X (42)

where

g e 5u% 61132 < MB, £ 6.7639

X = | e O®F(Me-58%)" g 7639 < MB, £8.1180 (43)
! 2
je 2Am(Ve- 3884 8 1180 < MB, £ 30.5044

Therelative deviation between g. and thefitted oneislessthan 3.5956% for any parameter M (or N)
and B, and it becomes less than 1% for B> 1rad/s. For Dolph-Chebyshev windows,

q,=10 1255678° (NB, +00001) ° (190N +2+D) | (44)
where

j0.1167N - 2.8167, N£25
D=10.0139N - 0.2030, 25<N £ 45 (45)

{.00023N +0.4301, N>45

The relative deviation between qq and the fitted one is less than 7.3189% for N £135, but it
becomes larger for bigger N and less By, such as more than 8.0749% for N > 315 and B4<0.0415 rad/s.
For Saramiki windows,

q = 10 12.5674%(NB,+0.0001) ® /226 (46)
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Therelative deviation between gs and thefitted oneislessthan 1.2566% for any parameter N and Bs.
For ultraspherial windows( m=2).
q, =10 125673 (NB,,+0.0001) ® /165 (47)
u2

The relative deviation between gy, and the fitted one is less than 5.2706% for any N and B,

For any fixed N and main-lobe width, it is found that gs and g. are almost the same as the gk, which
means the Saramiki and Cosh are like to the Kaiser windows that they both closely approximate to the
prolate spheroidal wave function. Besides, thereisqy < 92< gs, and the Dolph-Chebyshev windows are
obvioudly not close to the prolate spheroidal wave function. Windows with N = 63 are taken as
examplesin Fig.14, where, the black curve, red curve and green curve almost overlap, and the relative
deviations among them is less than 0.01%.

Conclusion

Analytic expressions which are suitable for any window length were adopted to compute the
coefficients of adjustable windows including the Kaiser, Cosh, Dolph-Chebyshev, Saramiki and other
ultraspherical windows. Well fits of the curves that the main-lobe width, ripple ratio, side-lobe roll-off
ratio and main-lobe energy ratio versus corresponding adjustable parameters were performed.
Furthermore, the curves that main-lobe width versus ripple ratio, side-lobe roll-off ratio versus ripple
ratio and main-lobe energy ratio versus main-lobe width were fitted. The relative deviations between
these spectral characteristics and the fitted ones are normally less than $7\%$. In conclusion, some
result were obtained through comparison:

1) The main-lobe widths of adjustable windows satisfy By< B< By< Bc< B, in condition with same
window length and ripple ratio.

2) The side-lobe roll-off ratios of adjustable windows satisfy Sp< S< § = 0dB and S~ jp ~Scyp IN
condition with same window length and rippleratio, and therelative deviationsamong S, Sy, and S o
is less than 0.001% which means S, & < S< 0 dB. But the order of S, S and Sy, is uncertain.

3) The main-lobe energy ratio of adjustable windows satisfy 0 < < quw< g< 1 and gs = Q.= Gk in
condition with same window length and main-lobe width. The relative deviations among s, 9., and gk
islessthan 0.01% which meansthe Saramaki and Cosh window are both close to the prolate spheroidal
wave function like the Kaiser window.

From above, it is found that the Saramaki window has better overal performance than other
adjustable windows through comparing those spectral characteristics. The work in this paper may be
helpful for some researchers who need choosing adjustable windows in signal spectral analysis, digital
filter design and other occasions.
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