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Abstract. Epilepsy is caused by abnormal synchronous discharge of neurons in the brain, which is the 
main basis for the diagnosis of epilepsy. Use of complexity theory to study the epileptic signal has 
become a hot spot. The symbolic transfer entropy can be used as a characteristic of epilepsy playing an 
increasingly important role in the study of epilepsy in EEG feature extraction. But symbolic transfer 
entropy is generally used to measure the dynamic characteristics and directional information between 
two variables and ignores the interaction between multivariate. In this paper, epileptic EEG signals is 
analyzed based on multivariate symbol transfer entropy. By choosing the lead signal and the signal 
length and analyzing the robustness, the method can be used to distinguish between normal and 
patients with epilepsy. It is proved the algorithm is robust and reliable. The findings will help clinical 
diagnosis. 

Introduction 
The main pathology of epilepsy is brain neuronal cell mass discharge abnormally and synchronously, 

diagnosis of epilepsy is currently in accordance with such discharge. It is significant that how to 
distinguish whether the patient's brain discharges or not, since epileptic patients showed no abnormality 
before it takes form and physical examination after the onset. 

It has become a research hotspot to study epilepsy signal using the method of complexity. Entropy 
can be used as a characteristic of epilepsy playing an increasingly important role in the study of epilepsy 
in the extraction of EEG feature. There are many ways to measure the complexity of the signal 
currently, such as conditional entropy [1], and sample entropy [2]. Pseudo-relationship may be 
concluded only study the relationship between two variables, so it is great significant to study the 
characteristics of multivariate signal. 

This paper is to analyse multivariate symbol transfer entropy EEG in epilepsy, which is use of the 
application of mutual condition information theory to look forward to distinguish between normal and 
epilepsy. The numerical results of the analysis found that the method can distinguish the normal and 
patients with epilepsy. Analysed the algorithm of noise immunity and found that the algorithm did not 
change much after superimposed white Gaussian noise and fully consistent trend, which shows that the 
algorithm is effective and reliable high robustness. 

Fundamental 

Multivariate transfer entropy. Transfer entropy [3] involves infinite vectors so it is hard to estimate 
reliably in high dimensions. To overcome this problem, the proposed transfer entropy decomposition. 
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decomposing TE into contributions of individual lags of X  via the chain rule. 
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Now the decisive step to escape the still infinite dimension of the condition in each term is done by 
utilizing the theory of graphical models [4].It is shown in Fig.1. 
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 The main idea stems from a Markov property that relates the separation of nodes in the graph to the 
conditional independences in the process. It implies that: 
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Once the time series graph (shown in Fig.1) of the process is known, suitable sets ,t tY XS
τ−

can be 
determined from it and the TE can be estimated using only low-dimensional densities. The remaining 
infinite sum can be truncated at some finite τ ∗ since the terms typically decay exponentially with τ .  

 

 
Fig.1 Time series graph 

Symbol of the original sequence. The Symbolic method [5] of original sequence is defined as 
follows: 
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1µ  and 2µ  is the average of the original sequence is greater and less than zero sampled signal. In 
order to make the processed signal dynamics without losing time series is usually taken a = 0.05. 

Multivariate symbol transfer entropy. Transfer entropy parameter has higher coordination 
requirements, so there has been transfer of entropy symbol [6]. 

Defined by multivariable transfer entropy [7] ( )
,

1

; |
t t

TE DTE

X Y X Y t t Y X
I I I X Y S

τ

τ

τ

τ

∗

−
→ → −

=

=≈ ∑ can be deduced defined 

multivariate symbol transfer entropy. Upcoming sequence  X  , Y , Z is converted into a sequence of 
symbols 
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Multivariate symbol transfer entropy is defined as: 
( )

( )
( )

( )
1 1 1 1 1 1

1 1 1 1 1 1

1 1

1 1

, , , , , , , , , , , ,
log

, , , , , , , , , , , ,
t t t t t t t t t t

t t t t t t t t t t

t t t tTE DTE

S J S J

t t t t

p s j s j j j k k p s j j j k k
I I

p j s j j j k k p s s j j j k k
τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ

τ τ τ

τ τ τ

− + − − − − − − − + − − − − − −

− + − − − − − − − + − − − − − −

− − − − −

→ →

− − − − −

≈ ==                                                              (5)  

 

t-3 t-2 t-1 t 

 Z 

X 

Y 

past|present 

,t tY XS
τ−

 

1786



 

Analysis of multivariate symbol transfer entropy 

Experimental data. This paper used the electrical signals that collected by the clinical diagnosis from 
general hospital of Nanjing military region. The database recorded multi-parameter EEG data 
(including 16 lead signal).The signal sampling period was 512Hz and the recorded time was more than 
1 minute. Take the lead signals F7、T5、T3, and calculate the transfer entropy of the symbol 

7 5F T→  with 3T  known. We label the two groups of data as sample "normal" and sample "epilepsy". 
Determine the selection of lead signal. For different lead group data, for each individual, with ten 

different point in time, select original sequence of the EEG signal that data length was L=80 from the 
samples "normal" and "epilepsy". Take the average of transfer entropy of ten groups of each individual 
as final transfer entropy of the multivariate symbol of the individual. Then take average of transfer 
entropy of multiple symbols owned by normal and epilepsy. The result as fig 2, The horizontal axis 
represents the coordinates of meaning: 1—F7->T5|T3, 2—FP1->O1|C3, 3—F3->P3|C3, 
4—FP1->O2|C4, 5—F4->P4|C4, 6—F8->T6|T4, ste---> multivariate symbol transfer entropy. Lead 
symbol 7 5 | 3F T T→ had a good degree of differentiation. 
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Fig. 2 Comparison of the symbolic transfer  in               Fig.3 Relationship between transfer entropy   
total different lead groups                                              data length L 
The original EEG sequence were taken from each individual EEG sequence which come from 

sample "normal" and sample "epilepsy", take average of the multivariate symbol transfer entropy of  
normal and epilepsy patients. As shown in Fig.3, we take the data length L =160. 

Take a fixed length of L =160 original sequence of EEG from the sample "normal" and "epilepsy". 
Take average of multivariate TE of normal EEG and Epileptic respectively. The result is shown in 
Table 1. 

Table 1 Multivariate symbolic transfer entropy of normal and epileptic 
 

Individual 1 2 3 4 5 6 7 8 9 10 mean 
Normal 

12.385 9.913 7.903 11.067 12.865 9.518 9.270 3.874 9.553 11.902 9.825 
Epilepsy 

10.646 4.727 6.196 5.927 6.703 4.742 2.955 4.977 3.297 8.982 5.915 

 
Study of the multivariate transfer entropy in normal and epilepsy EEG, drawn in accordance with 

Table 1, the mean and variance of a diagram, shown in Fig.4 
Use independent T-test analysis the results that obtained value of T = 3.489, P = 0.002642 < 0.05. 

This indicates the algorithm can distinguish the EEG of normal and patients with epilepsy significantly. 
Robustness of the algorithm. To verify the robustness of the algorithm, taken the length of the 

data as L = 40*i ( i = 1, 2, 3, 4, 5) of  two types of brain signals the original sequence, superimposed 
white Gaussian noise from the sample "normal " and "epileptic ".  The result is shown in Fig 5. 
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Fig. 4 Comparison of the symbolic tranfer entroy        Fig.5  Robustness analysis of multi variable symblic 
between normal and epilepsy                               transfer entropy algorithm 

Summary 
This article is based on multivariate analysis epileptic symbol transfer entropy, which is to study the 
relationship between several variables using conditional mutual information theory.  Experimental 
results show that use of this method requires only a small sequence length can be analysed on the 
normal EEG and epilepsy, and can effectively distinguish normal EEG and epilepsy EEG. Use the 
method of symbolic to handle the original sequence of the EEG signal, it was found that superimposed 
noise on signal less affected by the noise. It illustrates the robustness of the algorithm. The findings will 
help clinical diagnosis. 
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