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Abstract. Based on comprehensive considerations of influences generated by stiffness excitation,
deviation excitation, meshing impact excitation, friction of tooth surface, and other kinds of nonlinear
factors, it established a nonlinear coupled vibration model of bending-torsion-axial-swing coupled
helical gear transmission system by applying the Lumped Mass Method. After transformed the model
to dimensionless form, it used Runge-Kutta method to solve the nonlinear vibration model of the
system, and then the time domain chart, spectrum chart, phase chart, Poincare chart, and FFT chart
were obtained; it discussed the influence of system parameters on its dynamic characteristics.

Introduction

Gear transmission systems had been widely used in machinery, metallurgy, mining, automobile,
spaceflight and other fields. With the development of modern industries and mechanical science and
technologies, requirements for gear transmission system with quick running, light duty, large
load-bearing capacity, long service, and high reliability had been desired, this made it inevitable for
system to work under the conditions of high speed, heavy duty, high temperature, and approaching to
limit load for along time, so it wasarigorous requirement of gear transmission accuracy, vibration ,and
noise characteristicy 1].

The creation of vibration model of bending-torsion-axial-swing coupled helical gear
transmission system

Creation of Vibration M odel. Because of elastic deformation of transmission shaft and its support,
the helical gear transmission system did not only produce bending vibration, torsion vibration, axial
vibration but also produce torsion pendulum vibration, in order to take a further research of dynamic
characteristics of the transmission system, it needed to establish a nonlinear coupling vibration model
for bending-torsion-axial-swing coupled of helical gear system, showed as Fig. 1.

Every gear had five degrees of freedom; ¢, and k, were damping and time varying contact rigidity;
m; and cmy;(j=x,y,2) were supporting rigidity and equivalent damping; e(t) was static error. f was
driving gear helix angle, a was transverse pressure angle, the x, y, and z direction components were[ 2] :
Tk, =k,sina k, =k,cosacosb k. =k,cosasnb
_{cmxzcmsina C.y =Cj,C0sa cosb ¢, =c,cosasinb (1)
{ex =esina e, = ecosa cosb e, =ecosa sinb

Radial dynamic meshing force Fy was:

F=knsna xf[x - x,- (y, +q,R, +Y,- d,R)tana, - ] +c snalk, - %, -

(2
(&p +(fszp + &g - &ngg) tanat - é><]
Tangential dynamic meshing force F, was:
F, =k, cosa cosb xf[y, -y, +q,R +q,R, - €] +c,cosacosb[¥,- ¥, +d R +d R - &] (3)

© 2015. The authors - Published by Atlantis Press 1912



Axial dynamic meshing force F, was:
F,=kycosasinb xf[z - z, +(y, +q,R, - Y, +q,R)tanb - e ]+c cosasinb[#, - & (@)

+(¥,+d,R - ¥, +d,R)tanb - &]
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Fig.1 The helical gear dynamics analysis model Fig.2 The time-varying meshing stiffness of helical gears
With the method of Newton second law the helix gear pair calculation equations were:
im& ek ko f(x,)=-F m# +c, ¥, +k, f(y,)=-F mi +c i +k,f(z)=-F,
|
1 pré&py + Cpqy&pr Ky Ay Ry =+ FszJpzé&pz =T,- {,R, m, &, +c Xk, +k,f (Xg) =F, (5)
: mg% + ngg(g + kgyf (yg) = Fy mgmg + ngﬁg + kng (Zg) = Fz
% ngéf%y + ngydggng + kgqugng =- FZRQ ng&&gz =- Tg + Fng
Where, Ri(i=p,g) was gear base radius, m(i=p,g) and J;(i=p,g;j=Y,2) were gears masses and rotary
inertias; c;(i= p,g;j=x,y,2) and k;(i= p,g;j=x,y,2) were gears supporting damping and rigidity separately;
Cioy(1=P,9) and kigy(i= p,g) were torsion damping and rigidity; f(i;) (i=x,y,zj=p,9,S) was backlash
non-linear function; bs was half of backlash, b;and b, were half of gearsradia internal clearances, and
2bz and 2b, were half of gears axial internal clearances.
Comparing with spur gear meshing, helix gear mesh curve did not appear step mutation, while it
performed a character of “point-line-point” periodic variation and was showed as Fig.2[3].
Where, k_wasmean meshrigidity; a, and b, were Fourier expansion coefficients, andn =1, 2, ---,N.
Dimensionless dealing of the model. Given gear rigidity coefficient order varied from 10" to 10°
and damping ratio order varied from 10 to 10, while vibration response changed from 10° pumto 10
um, so it needed to make the Equ.2 indexes being dimensionless. The helical gear pair natural
frequency w, =./k_/m, (m.wasequivalent mass), given displacement scale bs and dimensionlesstime
=t'w,, P and{§ were 2 order and 3 order derived numbers against z. The dimensionless equation
system was
_i, wl +pr&1 +hpr (pl) -I-hpmxf (pll) +Xpmx&11 = 0 wZ +Xpy&2 +hpyf (pz) +hpmy f(plz) +Xprry &12 = 0
: w?; +sz&3 +hpzf (p?,) +hpmzf (pl?,) +Xpmzb13 =0 w4 +quy&4 +hpqyp4 +4hpmzf (pl?,) +4Xpmz &13 =0 (6)
T8+ 20, T(Py) + 2, B = G, B + X B Mg T (P6) - N (Pre) - X B =0
: & +ng&7 +hgy f (p7) - hgmy f(plz) - Xgmy &12 =0 ﬁa +ng&8 +hng (ps) - hgmzf (pl?,) - Xgmz&li% =0
¥ wg +ngy&9 +hgqy p9 +4hgmzf(p13) +4Xgmz &13 = 0 4&10 - 21gmy f (plz) - 2Xgmy&12 =- gg

Where, dimensionless damping indexes were , - %,y - %% |y - % |
P mw, ¥ mw, * mw,
_ 2c,, (I, +15) Cx = cpSina « = Cm00sa cosb « = CmC0sa sinb Xg = Cox Xy, = Cqy ’
o mRw, T maw, P mw, P mw, myWw, m,w,
C . H . -
X =2y =2%*l) - _GSna _coosacosh  , _G00sasinb | pimensionless
rnan 9ay mg Ran 9 man gmy rnan 9 man
rigidity indexes were
2 2 2 2 2 2
w w w 2w (1, +1,) - w w
— px —_ Vpy _ Wpz _ px\'1 " 12 _ m, sSina — Wox _ gy
hpx_wnz’hpy_ws’hpz_Ws’hpqy_ RanZ " o = [1+ 5>C0S(W )] m, ’hgx_wnz’hgy_ws’
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Wg i W2 (I, +1
]mecosacosb,hgzz gz,hm:[“s)cos(wt)]ngcosasnb,hgqy: gx(32 2
A m, Rw;,

h = [1+ s>cos(wt )

N

m,sina

g = [L+ S>c0S(t )]  hyy =1+ ScoS(Wt )]%cosb, hgre = [1+ S >c0S(WA )}M

9 9
The other dimensionless parameters were[4]:

pr:\/kpx/mp’ Wpy:vkpy/mp’ sz:\/kpz/mp ’ ng:vkgxlmg ’ Wgy:vkgy/mg ’ Wgz:vkgz/mg ’
2T 2T J.J

gp: = 9

",
mpprswj % nggbswj

M= 7
IRy + IR,

Solving of the gear driven system non-linear dynamic model

Create a higher-order fitting polynomial for a non-linear function. In a dynamic solution, a
clearance non-linear function was expressed as several sectional functions. In a calculation process if
sectional function judgment times was too much, this would cause bad computation efficiency even
endless loop. Therefore, it expressed the clearance non-linear function as a higher order fitting
polynomial.

Fetched uniformly 600 sample points at function curve, and used MATLAB softwareto programthe
polynomial basing on least squares theory. Fitting coefficientswere listed in Table 1. The higher fitting
order, the closer to original function. Once it up to 7 times the curve no longer changed(Fig.3).

Tab. 1 Thefitting coefficient of high order curve

- e
Times xt X X X x°

1 05187 - - - - g
3 0.1725  0.0640 - - - I // —
5  .00542 01814 -0.0117 X
i
9

-0.1573  0.2843 -0.0368 0.0017
-0.1557 0.2818 -0.0357 0.0015 O

Fig.3 Fitting curves of the nonlinear function
Solving the gear driven system non-linear dynamic model

Using 5 order variable step self adaptive (Runge-Kutta) method, it could get different system dynamic
responses containing displacement-time curve, speed-time curve, phase plane curve, Poincare graph,
and FFT graph. Took the gears x and y direction dynamic responses as example, the response curves
were showed in Fig.4 and Fig.5.

These results showed that the driving gear vibration amplitude along the x axis (radial) was bigger
than the driven gear, the wave frequency was much severer and the vibration smooth was lower than
the driven gear; the driving gear vibration was similar to a single periodic smple harmonic vibration,
and after aspectrum analysisit showed that low-frequency signals of the driving gear covered the chief
ratio; Phase picture was a un-closed curve which had constant breadth, and this showed that these two
gears run as non-periodic motions along the x axial; At y (tangential) direction, the driven gear
vibration amplitude was bigger than the driving gear, and this mean that the driven gear vibration was
much severer; these two gears vibration displacements and speeds were single periodic smple
harmonic waves, the Phase pictures were closed curvesthat had constant widths, and this showed that
these two gears run as periodic motions along the y direction.
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(a) Driving gear time-displacement response  (b) Driven gear time-displacement response
(c)Driving gear time-speed response  (d) Driven gear time-displacement response
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(e) Driving gear phase diagram (f) Driven gear phase diagram
(g) Driving gear FFTdiagram (h) Driven gear phase diagram
Fig.4(a~h) Dynamic responses along x direction of the helix gears
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(e) Driving gear phase diagram (f) Driven gear phase diagram
(g) Driving gear FFTdiagram (h) Driven gear phase diagram
Fig.5(a~h) Dynamic responses along y direction of the helix gears
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