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Abstract. Based on comprehensive considerations of influences generated by stiffness excitation, 
deviation excitation, meshing impact excitation, friction of tooth surface, and other kinds of nonlinear 
factors, it established a nonlinear coupled vibration model of bending-torsion-axial-swing coupled 
helical gear transmission system by applying the Lumped Mass Method. After transformed the model 
to dimensionless form, it used Runge-Kutta method to solve the nonlinear vibration model of the 
system, and then the time domain chart, spectrum chart, phase chart, Poincare chart, and FFT chart 
were obtained; it discussed the influence of system parameters on its dynamic characteristics. 

Introduction 
Gear transmission systems had been widely used in machinery, metallurgy, mining, automobile, 
spaceflight and other fields. With the development of modern industries and mechanical science and 
technologies, requirements for gear transmission system with quick running, light duty, large 
load-bearing capacity, long service, and high reliability had been desired, this made it inevitable for 
system to work under the conditions of high speed, heavy duty, high temperature, and approaching to 
limit load for a long time, so it was a rigorous requirement of gear transmission accuracy, vibration ,and 
noise characteristics[1]. 

The creation of vibration model of bending-torsion-axial-swing coupled helical gear 
transmission system 

Creation of Vibration Model. Because of elastic deformation of transmission shaft and its support, 
the helical gear transmission system did not only produce bending vibration, torsion vibration, axial 
vibration but also produce torsion pendulum vibration, in order to take a further research of dynamic 
characteristics of the transmission system, it needed to establish a nonlinear coupling vibration model 
for bending-torsion-axial-swing coupled of helical gear system, showed as Fig.1. 

Every gear had five degrees of freedom; cm and kh were damping and time varying contact rigidity; 
mij and cmij(j=x,y,z) were supporting rigidity and equivalent damping; e(t) was static error. β  was 
driving gear helix angle, α was transverse pressure angle, the x, y, and z direction components were[2]: 
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Radial dynamic meshing force Fx was: 
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Tangential dynamic meshing force Fy was: 
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Axial dynamic meshing force Fz was: 
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Fig.1 The helical gear dynamics analysis model Fig.2 The time-varying meshing stiffness of helical   gears 
With the method of Newton second law the helix gear pair calculation equations were: 
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Where, Ri(i=p,g) was gear base radius; mi(i=p,g) and Jij(i=p,g;j=y,z) were gears masses and rotary 
inertias; cij(i= p,g;j=x,y,z) and kij(i= p,g;j=x,y,z) were gears supporting damping and rigidity separately; 
ciθy(i=p,g) and kiθy(i= p,g) were torsion damping and rigidity; f(ij)(i=x,y,z;j=p,g,s) was backlash 
non-linear function; b5 was half of backlash, b1and b2 were half of gears radial internal clearances, and 
2b3 and 2b4 were half  of gears axial internal clearances. 

Comparing with spur gear meshing, helix gear mesh curve did not appear step mutation, while it 
performed a character of “point-line-point” periodic variation and was showed as Fig.2[3].  

Where, mk was mean mesh rigidity; an and bn were Fourier expansion coefficients, and n =1, 2, …,N. 
Dimensionless dealing of the model. Given gear rigidity coefficient order varied from 107 to 108 

and damping ratio order varied from 10-4 to 10-1, while vibration response changed from 100 µm to 101 
µm, so it needed to make  the Equ.2 indexes being dimensionless. The helical gear pair natural 
frequency /n m ek m=ω (me was equivalent mass), given displacement scale b5 and dimensionless time 
τ=t·ωn, p&  and p&&  were 2 order and 3 order derived numbers against τ. The dimensionless equation 
system was 
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Where, dimensionless damping indexes were
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The other dimensionless parameters were[4]: 

ppxpx mk /=ω ， ppypy mk /=ω ， ppzpz mk /=ω ， ggxgx mk /=ω ，
ggygy mk /=ω ， ggzgz mk /=ω ，
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Solving of the gear driven system non-linear dynamic model 

Create a higher-order fitting polynomial for a non-linear function. In a dynamic solution, a 
clearance non-linear function was expressed as several sectional functions. In a calculation process if 
sectional function judgment times was too much, this would cause bad computation efficiency even 
endless loop. Therefore, it expressed the clearance non-linear function as a higher order fitting 
polynomial. 

Fetched uniformly 600 sample points at function curve, and used MATLAB software to program the 
polynomial basing on least squares theory. Fitting coefficients were listed in Table 1. The higher fitting 
order, the closer to original function. Once it up to 7 times the curve no longer changed(Fig.3). 
Tab. 1 The fitting coefficient of high order curve 
Times x1 x3 x5 x7 x9 

1 0.5187 - - - - 

3 0.1725 0.0640 - - - 

5 -0.0542 0.1814 -0.0117 - - 

7 -0.1573 0.2843 -0.0368 0.0017  

9 -0.1557 0.2818 -0.0357 0.0015 0  
Fig.3 Fitting curves of the nonlinear function 

Solving the gear driven system non-linear dynamic model 
Using 5 order variable step self adaptive (Runge-Kutta) method, it could get different system dynamic 
responses containing displacement-time curve, speed-time curve, phase plane curve, Poincare graph, 
and FFT graph. Took the gears x and y direction dynamic responses as example, the response curves 
were showed in Fig.4 and Fig.5. 

These results showed that the driving gear vibration amplitude along the x axis (radial) was bigger 
than the driven gear, the wave frequency was much severer and the vibration smooth was lower than 
the driven gear; the driving gear vibration was similar to a single periodic simple harmonic vibration, 
and after a spectrum analysis it showed that low-frequency signals of the driving gear covered the chief 
ratio; Phase picture was a un-closed curve which had constant breadth, and this showed that these two 
gears run as non-periodic motions along the x axial; At y (tangential) direction, the driven gear 
vibration amplitude was bigger than the driving gear, and this mean that the driven gear vibration was 
much severer; these two gears vibration displacements and speeds were single periodic simple 
harmonic waves, the Phase pictures were closed curves that had constant widths, and this showed that 
these two gears run as periodic motions along the y direction. 
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        (a)                                                     (b)                                              (c)                                                   (d) 
 (a) Driving gear time-displacement response    (b) Driven gear time-displacement response 
 (c)Driving gear time-speed response  (d) Driven gear time-displacement response 

     
                  (e)                                                       (f)                                (g)                              (h) 
(e) Driving gear phase diagram           (f) Driven gear phase diagram     
(g) Driving gear FFTdiagram              (h) Driven gear phase diagram 

Fig.4(a~h) Dynamic responses along x direction of the helix gears 

              
(a)                                             (b)                                              (c)                                           (d) 

(a) Driving gear time-displacement response      (b) Driven gear time-displacement response                                     
(c) Driving gear time-speed response         (d) Driven gear time-displacement response 

 
(e)                                             (f)                                              (g)                                 (h) 

(e) Driving gear phase diagram                (f) Driven gear phase diagram 
(g) Driving gear FFTdiagram                 (h) Driven gear phase diagram  

Fig.5(a~h) Dynamic responses along y direction of the helix gears 
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