Mechanisms and Kinetics of MnO_x-Based Catalysts at Low-Temperature Selective Catalytic Reduction of NO_x

Yongli Yang^{1,2,a}

¹School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

²School of Environmental Engineering, North China Institute of Science and Technology, Yanjiao Beijing 101601, China

^a21358665@qq.com

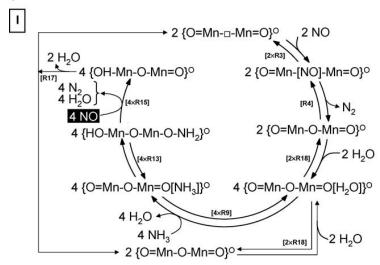
Keywords: MnOx, SCR, Mechanism, Kinetic, NOx

Abstract. MnO $_x$ has become a focus in the research of low-temperature SCR De-NO $_x$ catalysts for its good catalytic activity. Many MnO $_x$ -based catalysts have been researched which all have a high selectivity low-temperature N $_2$ and good anti-poisoning, but most of them lack enough clear reaction mechanism and kinetic. In this paper, the research progress of SCR mechanisms and kinetics were summarized. The mechanisms are for the NH $_3$ as the reducing agents and MnO $_x$ as the active centres. The overall reaction mechanism can be explained by L-H, E-R and Mars-van Krevelen mechanisms. H $_2$ O and SO $_2$ deactivation mechanism are also mentioned. The kinetics of SCR reaction of MnO $_x$ at low-temperature are studied based on power function, mechanism derivation and the combination of them.

Introduction

Selective catalytic reduction (SCR) denitration technology is widely used in the industry, which basic principle is: $NH_3+NO+O_2 \rightarrow N_2+H_2O$, the denitration catalyst is the core of SCR. At present, the denitrification catalyst must be arranged before the flue gas dust removal system, because of the reaction temperature must be higher than 350° C. In the high concentration of dust laden gas, the catalyst poisoning is easily caused by heavy metals and SO_2 , the life of the catalyst is short and the operating cost is great. Therefore, the research and development of low temperature denitrification catalyst has important environmental and economic value, which is arranged after the dust removal and desulfurization process.

The MnO_x is a focus in the research of low temperature denitration catalysts. As the active component, Mn can provide more free electrons and oxygen vacancies, MnO_x -based catalysts showed good low-temperature denitration activity. According to the study by Peña et al. [1], the result showed that at 393K removal denitrification activity sequence is: Mn>Cu>Cr>Co>Fe>V>Ni, which also showed that Mn has higher catalytic activity in the presence of water vapor (H_2O) . Kapteijn et al. [2] made a systematic study on single component MnO_x of different valence states at 385K-575K, the result showed that the removal denitrification activity sequence of different valence state of MnO_x is: $MnO_2>Mn_5O_8>Mn_2O_3>Mn_3O_4>MnO$, Mn_2O_3 showed the highest N_2 selectivity, and the denitrification efficiency of MnO_2 was 100% at 450K.


SCR Mechanism

At present, many low-temperature catalysts have been studied, but most of them lack enough clear reaction mechanism. On the other hand, the SCR mechanism is very important for the research of low-temperature catalysts. It can help us to understand why the activity of catalysts high or low. In this paper, the research progress of SCR mechanisms was summarized, which mains on the removing NO_x by NH₃ as the reducing agent as well as the H₂O and SO₂ deactivation mechanism.

Mechanisms of NH₃ as the reducing agent. According to the current research, there are Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms for NH₃-SCR. Many researchers have found that the mechanism of Mars-van Krevelen may be in presence for the MnO_x based low-temperature

catalysts. E-R refers to the mechanism between NO_x of gas phase and the adsorbed NH_3 reacts to form intermediates, and then decomposed into N_2 and H_2O ; L-H mechanism refers to the reactants (NO_x and NH_3) first adsorbed on the active site of the catalyst to form an intermediate, and then decomposed into N_2 and H_2O . The E-R and L-H reaction mechanism shows that NH_3 is involved in the reaction of adsorption state, but the adsorption effect of NH_3 for different acid sites (Brønsted acid and Lewis acid sites) is no unified understanding. Most of studies proved that the reaction temperature had a significant effect on the two kinds of acid sites, which shows that Lewis acid at low temperature on adsorption of NH_3 is significant, high temperature Brønsted acid adsorption of NH_3 plays a main role.

The mechanisms and kinetics of Mn-Fe catalyst were studied by Yang et al.^[3], the results shows that the reaction of (Fe_{2.8}Mn_{0.2})_{1-δ}O₄ catalyst surface was followed by L-H mechanism, and the mechanism of E-R was dominant at 200°C. For (Fe_{2.8}Mn_{0.2})_{1-δ}O₄ catalyst, the E-R and L-H mechanism from 80°C-200°C to coexist, when temperatures above 100°C E-R play main role. Marban et al.^[4] discussed the E-R mechanism of the low-temperature (125°C) selective catalytic reduction of NO with NH₃ over carbon-supported Mn₃O₄, who also shows two different SCR mechanisms (see Fig.1).

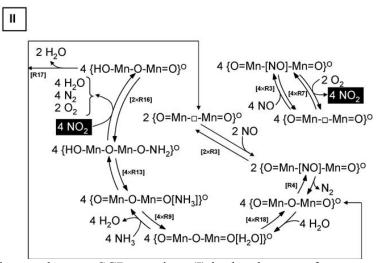


Fig.1. Mechanism of the steady-state SCR reaction: (I) in the absence of oxygen; (II) in the presence of oxygen.

Kijlstra et al. $^{[5]}$ studied the adsorption of NO and NH $_3$ on MnO $_x$ /Al $_2$ O $_3$ catalysts, separately by use of TPD and FTIR, also investigated the influence of O $_2$ on the adsorption of the reactants. At 423 K, the following compounds can be present, in increasing order of thermodynamic stability: linear nitrites, bridged nitrites, monodentate nitrites

bridged nitrites. The formation of

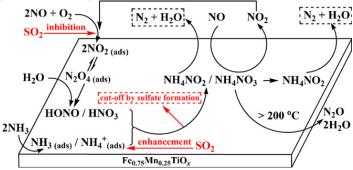

these five species is strongly enhanced in the presence of O₂, and probably proceeds by NO oxidation(see Table 1).

Table 1 Thermal Stabilities Adsorbed NO Complexes

Species	v_3/m^{-3}	v_3/m^{-3}		Desorption/ decomposition
Nitrosyl	1835		$Mn^{n+}-N=O^{\delta}$	323 K
Bridged nitrate	1620	1220	Mn ⁿ⁺ -O Mn ⁿ⁺ -O N-O	423–573 K
Bidentate nitrate'type II'	1290	1555	Mn N-O	573–698 K
Bridged nitrate'type I'	1580	1220	Mn ⁿ⁺ N-O	473–573 K
Linear nitrite	1466	1075 (υ ₃)	Mn^{n+} -O-N=O	323–473 K
Monodentate Nitrite	1415	1322 (v ₃)	Mn ⁿ⁺ -N	323–473 K
Bridged nitrite		1230	Mn^{n+} -O N Mn^{n+} -O	323–523 K

 H_2O and SO_2 deactivation mechanism. Low temperature NH₃-SCR denitration device layout after the dust removal and desulfurization process, and the temperature of the flue gas after the desulfurization was generally lower than 200°C, so the catalysts are easily to be poisoned by SO_2 and $H_2O(g)$. Whether the catalyst has excellent anti H_2O and anti SO_2 performance is the key to its ability of industrial application. In recent years, many researchers have carried out a lot of study on the anti H_2O and anti SO_2 performance of MnO_x -based low-temperature NH_3 -SCR denitrification catalyst.

Kijlstra et al. [6] studied the influence of H₂O and SO₂ on MnO_x/Al₂O₃ catalyst. The results showed that the influence of water vapor (H₂O) on the catalyst is mainly shown in two aspects: physical competition adsorption and chemical adsorption; SO₂ reacted with MnO_x to produce Mn sulfate, which easily deposited on the pore of the catalyst and reducing catalytic activity. Liu et al. [7] studied the inhibition of SO₂ and H₂O on Fe_{0.75}Mn_{0.25}TiO_x catalyst. The results showed that the effect of H₂O on the activity of SCR catalyst was mild and reversible, and the inhibition effect of SO₂ was more intense and irreversible, because of nitrate deposition on the surface of the catalyst had been cut off the way of SCR reaction(see Scheme.1).

Scheme.1. Proposed mechanism of the NH_3 -SCR reaction over Mn substituted irontitanate catalyst at low temperatures and the influence of SO_2 on the reaction pathway.

Jin et al^[8]. studied the relationship between reaction of SO₂ in inhibitory action and reaction temperature over Mn-Ce/TiO₂ catalyst. The results showed that the higher reaction temperature, the faster catalyst activity decreased, at 200°C the catalyst active site of sulfation serious resulting in

irreversible deactivation, but at 100°C generated (NH₄)₂SO₃ and NH₄HSO₄ leads to catalyst deactivation, which catalytic activity can be recovered by washing with water.

Kinetics

The kinetics of SCR reaction of MnO_x at low temperature was studied based on power function, Mechanism derivation and the combination of them. Qi et al. [9] studied the kinetics of MnO_x -CeO₂ catalyst which based on the power function equation ($r_{NO} = k[NO]^x[NH_3]^y[O_2]^z$) at 120°C, the reaction order was calculated, the NH₃, O₂ and NO of the reaction series were 1, 0 and 0.5. Yang et al. [10] deduced the NO conversion rate of dynamics equation on Mn-Fe catalysts, which based on L-H and E-R mechanisms(see equations.1).

$$\mathcal{X} = k_1 k_6 k_7 \text{BET} c_{acid} \int_0^{t'} \exp(-k_1 k_6 k_7 c_{acid} t) dt + k_1 k_2 k_3 \text{BET}[\text{Mn}^{4+}]$$

$$\times c_{acidt'} \frac{[\text{NO(ad)}]}{[\text{NO(g)}]_0}$$
(1)

Conclusions and perspective

The adsorption of NO and NH_3 at the surface of catalysts is very important for low-temperature selective catalystic reduction of NO_x . Through various characterization techniques, we have a preliminary understanding of the mechanism of NH_3 -SCR reaction at low temperature. But at present, the MnO_x -based catalyst is not good enough for the SO_2 and H_2O poisoning resistance, the H_2O and SO_2 inhibition mechanism is not yet fully mastered.

In future research, we need to deeply explore the adsorption and activation mechanism of NH_3 and NO in MnO_x catalysts, research clearly H_2O and SO_2 inhibition mechanism of MnO_x catalysts, for high H_2O and SO_2 resistance of MnO_x catalysts research and development to lay the theoretical foundation.

Acknowledgements

This work was financially Supported by the Fundamental Research Funds for the Central Universities (3142015035)

References

- [1] D.A. Peña, B.S. Uphade, P.G. Smirniotis, et al.: J. Catal. Vol. 221 (2004), p. 421
- [2] F. Kapteijn, L. Singoredjo, A. Andreini, et al.: Appl. Catal., B Vol. 3 (1994), p. 173
- [3] S. Yang, C.Z. Wang, J.H. Li, et al.: Appl. Catal., B Vol. 110(2011), p. 71
- [4] G. Marbán, T. Valdés-Solís, A.B. Fuertes: J. Catal. Vol. 226(2004), p. 138
- [5] W.S. Kijlstra, D.S. Brands, E.K. Poels, et al.: J. Catal. Vol. 171(1997), p. 208
- [6] W.S. Kijlstra, M. Biervliet, E.K. Poels, et al.: Appl. Catal., B Vol. 16(1997), p. 327
- [7] F.D. Liu, H. He: Catal. Today Vol. 153(2010), p. 70
- [8] R.B. Jin, Y. Liu, Z.B. Wu, et al.: Catal. Today Vol. 153(2010), p. 84
- [9] G.S. Qi, R.T. Yang: J. Catal. Vol.217(2003), p.434
- [10] S. Yang, C.Z. Wang, J.H. Li, et al.: Appl. Catal., B Vol. 110(2011), p. 71