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Abstract. This Essay has studied a glycolysis model and found two new exact solutions for this
model, namely the group-invariant solution for the model obtained by applying the Lie group method,
and the solitonicic solution for the model obtained by applying the hyperbolic function method.

Introduction
Consider a glycolysis model below:

a—uzdlAu+§—ku—uv2

%:dzAv+ku—v+uv2

Where, u and v represent the concentrations of two chemical substances respectively; & represents
input flow; Kk is the active rate of enzyme; d; and d are the diffusion coefficients; &, k, d; and d, are
all positive numbers. Essay [1] has conducted a general analysis on this model while Essays [1-4]
have studied whether the solutions for the model exist as well as other issues. This essay has
accomplished two new exact solutions for Equation (1) respectively by applying the Lie group
method and the hyperbolic function method.

Solitonicic solution for the model
Assume:

u(x, y,t) = ¢(@),
V(X Y,t) =d(w), » = x+ At

Substitute it into Equation (1):
d,u”-Au’ + & —ku —uv?=0 @)
d,V"-Av' +ku — v + uv®=0 €))

Assume u and v are the polynomials of T"and T" respectively (where T is a hyperbolic tangent
function). Provided the balance between the highest order derivative term d,u” and the nonlinear

term uv® in Equation (2) and the balance between the highest order derivative term d,u” and the

nonlinear term uv? in Equation (3), we can get: m+n+1=n+3, max(2m+1,2m+1)=m+3, and
solve itto get: m=2,n=1. When m=2,n=1, we can assume that Equation (1) has the following
solutions:

= T+a,T?,
{u a,+aT+a, "

V:b0+ T+b2T27

Where T is a hyperbolic tangent function. Substitute (4) into (1), combine the similar terms of T,
set the coefficients of T variables to zero, and then we get:
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P= bfk +9d, —3a§b1-b1§;/2 +4k*5 +2k%s% =0,

P, =b’ka, + 2ak’ —3a1k*-a A% + 2d k* —6ai 1’y *-a k*6% =0,
P, = a’ka, + b’k? —9a26k*-b,6? = 0,

P, = azzkao +3a§/12k2 —9a§53-d§52 +2bk* —-8b’A°k*-a,6° =0,

©))

Let PS={P, P, P, P}, and by applying Wu's elimination method we can obtain the
characteristic series CS as shown below:
C, = (-84 ++/35a, —5dk?)(a,6 —b,1) =0,
C, = (v/324K® +5k?a25 +9b,2k*) (a2 +85bk?) =0,
C, = b’k? —9a26k*-b25% —3a2h’a, +albA =0,
C, =4k’ +2k%5? —8aZa’k®-a,A* +a/b’ 1 =0,

(6

Solve CS =0, and we can get:
84+5d2k> \J24d;-65°4 3dZ-d25
a=—7p —b=a=3=0b="——F—"—0D,= (D
NED 3 24
Thus, we can obtain the following solitonic solutions for Equation (1):

_ 8A+507k?

u

1 \/55
J24d? 6522 242
1Ttanh(x+;tt)+%tanh2(x+/it),

tanh?(x + At),
®

1
When m=2,n=1, we can assume Equation (1) has the following solutions:

u=a,+aT+a,T?’
V= bO + blTy
Thus, we can obtain the following solitonic solutions for Equation (1):

2_£) 2 -d;
_ 94, -5k tanh(x+lt)+3/l3¥tanh2(x+/“)'

2

[1207 @ s2
Vv, = 2k + d13(/1 60 ))tanh(x+/1t),

)

2

Group-invariant solution for the model

First determine the infinitesimal generator for Equation (1). To do this, we can assume:
0 0 0 0
X =&(X,y,t,u)—+7(x, y,t,u)—+n(x, y,t,u)—+ (X, y,t,u)—
sx,y )6x (X, y )6t n(xy )au p(x,y )av

And

0 0 0 0
X(2)=X+ t__l_ t_+ XX + xx Y
¢ ou, 4 ov, ¢ ou 4 ov

XX XX
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Here
é’”‘ :Da¢_uxDa§_utDan’
. Daévﬂlmﬁwl ~uD g—u D,r-uD,z-uD &-uD,z-uD,z,
0

D, =—+u, —+>u u
“ Oa aua Z “A au ﬁlzﬂ: “ou,,
a, B, B, {%th N {2},
By setting
X@[du"-Au’+ 5 —ku—uv?]|, =0,and X"®[d,v"-Av'+ku —v+uv?]|; =0. (10)

We can obtain the infinitesimal generator for Equation (1) as well as the solutions for Equation (8)
by using Maple software.

£=—XxC,+tC, +2txC,
T=2txC, +(t* + xv)C,+3t*C,
, 1 1 av
n=(x*-vu)C, +(E X2 +§V2 +xvt)C,
p=2tvC, +/VC,+(4t*-x)C,
Thus, the infinitesimal generators for Equation (1) are shown below:
0 0
X, =2t——x—, X, \/_tv—+x -Vu) —
ot ox ov ( )
(t2+xv)—+\/7—+ui 12
ov  ou

X, :3t2£+2tx—+(4t2-x)—+(3x2 i1y +xvt)i.
ot OX ov 2 2 ou

Solve the following initial value problems:
%(t*, X,y ,u) = X (@, x,y,u)

0= (L y,u)

We can obtain the one-parameter Lie group for (4): g:(t,x, y,u) = (t',x",y",u"):
g, : (8, x,v,u) = (€**t,e%X,V,u)

g,:(txv,u)—> (e’gﬁgzzt,x+252t,v,u)
2 83X2
1+ 252 "1+ 2¢,

2 1
g, : (L, X, v,u) = (%% t,—==e"?% x,e*2v

J2e, T ug, +1

If f(t,x,v,u)=0 isthe solution for Equation (1), we may obtain new solutions for Equation (1) in
the following forms:

g, (t, X, v,u) —>( X,V,e72%U) 13)

u)
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h, 1 (t,x,v,u) = (e7%t,e7X, v, u),

h, (8, X, V,u) = (€', x— 2&,t, v, ),

2 2

X5, —&X

h.:(t, X, y,u) = (t, X, v,u) - t, X,V,e*u), a4
, (6 X, y,u) = ( ) (1 2, "1-2, )

h (t X,V U) 265 -2 1 1_‘6324 28, —e”

, (L X v, u) = (879, —=e" "X, 77V u).

\/Z ’ —ug, +1

By applying (8) (9) (14), we can obtain new exact solutions for Equation (1); e.g. using (8) (14)
and (h4), we can obtain the following new exact solutions for Equation (1):

21,2 —px’ )
US _ 82«+5d1 k € tanhz( 1 e1—254 X+/1e254 -6‘4t),
V3§ —ug +1 J2¢,
J24d2-65°4 :
v, =e°%[ L tanh( 1 eleyy ge% “it) 15
3 J2¢,
2 —g,x2
3d d 36;010 o (——— e % x + 2% 4t)],

e
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