
 

Finite Difference Approximations for Fractional Reaction-Diffusion 
Equations and the Application In PM2.5 

Changping Xie1, a, Lang Li1,b, Zhongzhan Huang1,c, Jinyan Li1,d, PengLiang Li1,e 
Shaomei Fang1,f, * 

1College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, 
China 

a229430694@qq.com, blilang05422@163.com, c2644696581@qq.com, dduduwoxing@126.com, 
e3290236818@qq.com, fdz90@scau.edu.cn 

*Corresponding author 

Keywords: PM2.5; fractional reaction-diffusion equations; Crank-Nicolson method; numerical 
simulation. 
Abstract. In this paper, fractional reaction-diffusion equations are used to model the diffusion of 
PM2.5 in the air. First, based on the shifted Grünwald formula, we propose the fractional 
Crank-Nicolson method to solve the fractional reaction-diffusion equations. Then we prove the 
existence and uniqueness of numerical solutions, and establish the stability and convergence of the 
method. Furthermore, numerical examples are also provided to show the efficiency of the method. 
Finally, the diffusion of PM2.5 in Guangzhou is simulated by using this method under appropriate 
parameters . 

Introduction 

With the rapid development of economy and constant improvement of human's requirements of living 
environment, the air pollution, especially PM2.5, has drawn much attention in China. The so called 
PM2.5, particles of aerodynamic diameter less than 2.5 micrometers, can lead to hazy weather and 
cause health problems [1]. Therefore, it is important and necessary to predict precisely the PM2.5 
concentrations for the control of air pollution and the improvement of the human living conditions.. 
However, it is not adequate to model and predict the PM2.5 concentrations using traditional methods 
when the fire or explosion takes place in somewhere. For this case, it is crucial to find a suitable 
method or model to predict the PM2.5 concentrations. 

Fractional reaction-diffusion equations can be regarded as the generalization of classical 
reaction-diffusion equations [2] and have been successfully applied to model problems in physics [3], 
biology [4], finance [5]. In this paper, we will use the following fractional reaction-diffusion equation 
to describe the diffusion of PM2.5: 
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where the diffusion coefficient ( ) 0a x  , wind speed ( ) 0b x  , and decay coefficient ( ) 0c x   are 

continuous, ( , )f x t  is a continuous function on   , 0,L R T
 
which represents sources and sinks. 

( , )u x t is the pollutant concentration.  
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For this equation, many researchers have studied the existence and uniqueness of the solution and 
acquired good results [6-7]. While to establish the numerical solution for this equation is also 
attractive. There are two ways to discretize the fractional derivatives. One is shifted Grünwald 
formula [8], the other is finite difference scheme [9]. This paper takes the first way to approximate the 
fractional space derivatives, and construct the Crank-Nicolson scheme. Below we prove the existence 
of the numerical solution and then we analyze the stability and convergence of the scheme. An 
example with known exact solution is also presented to test the efficiency of the scheme. Finally, we 
simulate the diffusion of PM2.5 in Guangzhou by choosing appropriate parameters. 

The Crank-Nicolson scheme for the fractional reaction-diffusion equation  

In this section, we propose the Crank-Nicolson numerical approximation scheme based on the shifted 
Grünwald formula [10-11], which is defined as 
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is the numerical solution of Eqs. (1)-(3), we have the following scheme: 
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Therefore, Eqs. (5)-(7) can be written as the following matrix form: 
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where 

1

2

1

,

n

n
n

n
K

c

c
C

c 

 
 
 
 
 
  



1/2
1 1 1 2 1

1/2
2 2 3 11

2

1/2
2 2 1 1

1/2
1 1 1 1 0 1

( )( ( ) ( ))

( ( ) ( ))

,

( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

n
n n

n
n n

n

n
K K K n n

n
K K K n n K n n

f E B g r t r t

f B g r t r t

F

f B g r t r t

f B g r t r t B g s t s t


















   


    

   
   
 
 

  
     

  

and matrix , ( 1) ( 1)( )i j K KA A   
 
is defined as follows: 
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Stability and convergence 

Theorem 1. The Crank-Nicolson scheme defined by Eqs. (5)-(7) has a unique solution and is 
unconditional stable for all 1 2  . 
Proof. Let   be an eigenvalue of the matrix A, and AX X  for some nonzero vector X . Choose 
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Substituting the values of ,i jA  into (10) we have 
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Then we have 0  , 1 1  , which means that every eigenvalue of I A  is no less than 1. 
Therefore, the spectral radius of 1( )I A   satisfies 1(( ) ) 1I A   .Thus we prove that the Eqs. 
(5)-(7) has a unique solution. 

To prove the unconditional stability of the scheme, we assume 0  to be the error in 0U , then it 

will result in an error in nU  given by 1 0( ) ( ) .
nn I A I A      We denote by   an eigenvalue 
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So the method is unconditional stable.  

Theorem 2. The scheme defined by Eqs. (5)-(7) with1 2   is unconditional convergent. 
Proof. In light of [12], we can see the local truncation error of Eqs. (5)-(7) is 2( )O h  , therefore the 
scheme is consistent. Then according to Theorem 1 and Lax equivalence theorem [12], we can show 
the method is convergent and the order of convergence is 2( )O h  . 

A numerical example 

The following fractional reaction-diffusion equation 
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Then the exact solution to this fractional equation is given by 2( , ) tu x t x e . 
Fig. 1 shows the numerical solution at time 1t  obtained from the Crank-Nicolson method Eq. (8) 

discussed above with 1/ 40h  , 1/ 20  . As can be seen from Fig. 1, this numerical solution 
compares well with the exact analytic solution. 

Table 1 shows that as the number of spatial steps is quadrupled and time steps is doubled, the 
maximum error is quadrupled, as expected from the order 2( )O h  of the convergence of the 
scheme. 

 
Fig. 1 Comparing the numerical solution with the exact solution ( 1 / 40h  , 1 / 20  ) 

Table 1 Maximum error behavior for the example problem 
t  ( , ) (1 / 20,1 / 8)h   ( , ) (1 / 40,1 / 32)h   Error rate 

0.5 2.6507 2e  7.3562 3e   3.61 

1.0 2.6766 2e  6.2247 3e   4.30 

1.5 2.1095 2e   5.2372 3e   4.03 

2.0 1.5121 2e   3.9448 3e   3.83 

Numerical simulation for the diffusion of PM2.5 

Below we will give a numerical simulation for the diffusion of PM2.5 in Guangzhou by choosing 
proper parameters. 

Here we choose the diffusion parameter of 2SO  to replace the diffusion parameter of PM2.5 i.e. 
5 2( ) 1.22 10 /a x m s  , as the diffusion parameter of PM2.5 is hard to determine and 2SO  is one of 

the most important chemical compositions of PM2.5 in Guangzhou[13-14]. For the wind velocity, 
from China meteorological data sharing service system, we know the average speed of wind in 
Guangzhou, with scale 0-3, is less than 5.4 /m s . Without loss of generality, we take the direction of 
wind as the x-axis, and the speed of wind is 5 /m s , i.e. ( ) 5 /b x m s . Finally, we determine decay 
rate of PM2.5. It can be approximate to 0 due to the fact that PM2.5 is difficult to disappear 
automatically without control. i.e. ( ) 0c x  . 

In this paper, we take the fractional order equal to 1.5. i.e. 1.5  . Then we have 
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with initial boundary conditions 
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Here we choose 0.1, 0.1h   . Fig. 2 and Fig. 3 present the solution surface and the contour lines 
of PM2.5 concentration respectively. As can be seen clearly from Fig. 2, PM2.5 concentrations 
decrease with the increase in x and increase with the increase in t. This indicates that the speed of 
pollutants released is more than the speed of diffusion. On the other hand, from Fig. 3, we can see the 
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contour is getting more and more sparse with the increase of x for fixed t, which indicates the higher 
the concentrations of PM2.5, the faster of the concentrations decreased and the smaller range with 
high PM2.5 concentrations. Moreover, Fig. 3 also shows the contour is getting more and more 
intensive with the increase in t for fixed x, which means PM2.5 concentrations increase more rapidly 
with the increase in t. 

     
               Fig. 2. The distribution of PM2.5               Fig. 3. The contour lines of PM2.5 concentrations 
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