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Abstract. This paper presents an approach to implement vibration signals for fault diagnosis of the rolling bearing. Due to the noise and 
transient impacts, it is difficulty to accurately diagnosis the faults with traditional methods. So a new type of learning architecture for deep 
generative model called deep belief networks (DBN) is applied. Since the unsupervised learning ability in DBN, it can extract the features 
from the raw data layer by layer. This article mainly research how to construct the encoder using DBN which can minimize the energy 
between the output and input vibration signals. Compared with existing diagnosis techniques, the proposed method can learn a good 
representation of features with higher accuracy. The results show that DBN can more comprehensively retain the data features in pattern 
recognition. 

1 Introduction 

The rolling bearing is widely used in actual engineering. 
According to the statistics, about 30% rotating machinery 
faults are related to rolling bearing damage. In bearing 
fault diagnosis, the most principal and useful method is 
vibration signal analysis. Due to the diversity and 
nonlinearity of vibration signals, the signal processing is 
the primal problem in rolling bearing fault diagnosis, it 
directly affects the fault diagnosis accuracy[1]. In recent 
years, people mainly adopt the methods in the time 
domain, frequency domain, time-frequency to extract the 
fault characteristics of vibration signals [2,3]. These 
methods have obtained the certain effect in fault 
diagnosis of rolling bearing. But it is difficult to eliminate 
the influence of false signals and data pollution. 

Recently, the deep belief networks (DBN) has 
developed into a prevalent approach in machine learning 
for its prominent advantages such as the ability of 
unsupervised learning, fast inference and multi-layer 
structures. As a new kind of machine learning model, 
DBN primarily simulate the human brain and extract the 
input data features layer by layer[4,5,6]. Now the DBN 
has been successfully applied to mechanical fault 
diagnosis, text, voice, image recognition and other fields 
[7-10]. However, it has not been reported that using the 
DBN to reconstruct the vibration signals. 

This paper develops a novel bearing fault diagnosis 
method using deep belief networks. The proposed 
diagnosis methodology can be structured in three stages: 
first, using the training samples to optimize the structure 
of DBN; second, developing DBN based on optimized 
structure for vibration signals reconstruction; third, 
implement the classifier to identify the testing samples. 
Rolling bearing fault diagnosis using DBN is compared 
with three existing diagnosis techniques: fast Fourier 
transform (FFT), Hilbert transform (HHT), Wavelet 
transform (WT). The results show that the proposed 
method can learn a good representation of features with 
higher accuracy. 
 

2 Bearing fault diagnosis using DBN 
 
This section details the proposed bearing fault diagnosis 
approach using DBN. The fault diagnosis process mainly 
included two parts: the signal reconstruction and faults 
recognition as shown in figure 1. 
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Figure 1. Fault diagnosis process based on DBN 

 
In signal reconstruction, the vibration signals were 

collected from one rotate circle. And the signals were 
normalized into the data vectors to ensure DBN 
convergence. Then the training sets were used to practice 
the DBN and generated the encoder. For the test signals, 
it was put into the encoder and get the reconstituted 
vectors. In the recognitions, the feature vectors were put 
into the classifiers and produce the fault results. 
 
2.1 Deep belief networks 
 
The DBN is a kind of probability generation model, 
which produce the largest probability eligible sample. 
There is a BPNN in the top of DBN, and multiple hidden 
layers in the middle. The DBN employs a hierarchical 
structure with multiple stacked restricted Boltzmann 
machines and works through a layer by layer successive 
learning process. Each RBM consists of two layers as 
visible (vi) and hidden (hi) layer. The connections 
between the nodes vi and hi are restricted. The process of 
transformation of data from visible layer to the hidden 
layer is finished through a sigmoid activation function 
based on the RBM learning rule. 
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Figure 2. Architecture of deep belief networks 

 
As shown in figure 2, the vi were the input layer nodes, 

hi were the output layer nodes, wij were the weight from vi 
to hj, c were the input layer bias, b were the output layer 
bias. The vector bi, ci, wij constructed the parameter set θ. 
The energy function and calculation formula of v, h and θ 
were: 
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DBN is constructed by stacking RBMs layer by layer. 
This architecture ensures that DBN can be practiced 
through the CD algorithm[4]. The DBN calculation 
process includes two major parts: the first procedure is 
called pre-training, each RBM layer is trained by using 
the activation probabilities of the lower-layer RBM as the 
input training data; the second procedure is fine-tune, the 
back-propagation algorithm can be used to adjust the 
network weights. 

 
2.2 DBN structure Optimization 
 
DBN structural optimization mainly determine the layer 
number, nodes number, learning rate, batch size etc. 
Because the sizes of fault signal is different, they need 
different structure model to adapt the feature extraction. 
The figure 3 is the flow chart of structure parameter 
optimization in DBN. 
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Figure 3. The flow chart of structure parameter optimization  

 
In the structure parameter adjustment, given an 

vibration signals, the encoder minimizes the energy 
between the output and input vectors using function (1). 
In the unsupervised learing, DBN trained the first hidden 
layer, and saved the training result as higher (more 
abstract) layer of input. Then the DBN was trained from 
bottom to up, and formated the model parameter vector 
group θ’. Then using the BP algorithm fine-tune the 
model parameters θ’ from top to bottom. The paraments 
θ’ assigned to wi, bi, ci one by one. Using the wi, bi, ci 
calculat the singnals’ input and output vector. When the 
signal reconstruction error was less than the threshold, 
the cycle was terminated, the algorithm was as follows: 

(1)Initialized the DBN structure parameters: hidden 
node number m, hidden layer number n, reconstruct error 
epsilon rate ε. 

(2)Input the signal sets D, and the signal D’ was 
generated by the encoder. 

(3)The reconstrct error were algorithmed by 'D D . 

(4)If the reconstrct error is less or equal to the ε, save 
the θ and generate the encoder, othersize modify the 
parameters m, n and unsurpsived training the DBN to 
update the θ. 

3 Experimental verification 

3.1 Test cases 
 
To test and verify the feasibility of proposed method, this 
article adopted the bearing fault experimental data from 
case western reserve university. The bearings was 
produced by SKF bearing 6205-2 deep groove ball 
bearings, sampling frequency was 12000Hz, motor speed 
was 1797rpm. The experiment selected the normal 
bearing, inner-ring faults and rolling body fault to 
identify the rolling bearing faults. Single point faults 
were introduced to the test bearings using electro-
discharge machining with fault diameters of 0.18mm. 
The sampling time was 4 second and the data points was 
48000. According to the sampling frequency and motor 
speed, the specimen rotated 400 sampling points as a data 
vector. The original signal waveform of various states 
bearing as shown in figure 4. 
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Figure 4. The original signal waveform of bearing 

 
As shown in figure 4, the signals were collected from 

three types fault signals and one normal signals. And it 
was difficult to identify the rolling bearing faults from 
such vibration signals.  
 
3.2 Signal reconstruction using DBN 
 
In this experiment, the 100 groups sample were selected 
from each fault sample set, then to construct the training 
sample matrix of 400 ⅹ 400. For the parameters 
initialization, the threshold of reconstruct error was 0.1, 
The parameters m, n initialized by 50 and 1. The model 
calculated the signals reconstruct error, if the error was 
less than 0.1, generate the encoder. If the error was more 
than 0.1, increased the m and n, and update the θ by the 
unsurprised training in DBN, until the error was less than 
0.1. Through the DBN structure optimization, the 
structure of DBN was shown in Table 1. 
 

Table 1. The structure of DBN 
Parameters Value 

Number of input nodes 428 

Number of iterations 1 

The activation function Sigmoid 

Mini-batch size 100 

Number of hidden layers 3 

Number of neurons in a layer 200 

The reconstruction error 0.1 

Learning rate 0.78 

 
According to the structure parameter adjustment, the 

hidden layer increased from 1 to 3, the hidden nodes 
increased from 50 to 200. So there were three RBMs in 
the DBN, every RBM had a parameter set including wi , 
bi , ci , as is shown in table 2. 

 
 
 
 
 
 
 
 
 
 

Table 2. Some parameters of encoder 

Parameters Value 

w1 
-0.1945 -0.2229 -0.2083 -0.2195 ……
-0.2032 -0.2338 -0.2315 -0.2180 ……

b1 -1.2859 -1.3292 -1.4016 -1.3114 ……
c1 -0.0888 -0.0681 -0.1472 -0.2208 ……

w2 
-0.1758 -0.1891 -0.2144 -0.2271 ……
-0.1855 -0.1986 -0.2236 -0.2356 ……

b2 -0.0928 -0.2384 -0.5229 -0.3611 ……
c2 -0.5318 -0.6009 -0.5432 -0.6075 ……

w3 
-0.0665 -0.0549 -0.0573 -0.0606 ……
-0.0637 -0.0527 -0.0566 -0.0580 ……

b3 -0.2259 -0.2560 -0.2874 -0.2457 ……
c3 -0.0126 0.0773 0.0229 -0.0217 ……

 
  As shown in table 2, the experiment generated the three 
hidden layers DBN encoder which used to extract the test 
signal characteristic information. Among them, the w1, b1 

and c1 were the coding parameters in the first hidden 
layer (RBM1), the w2, b2 and c2 were the coding 
parameters in the second hidden layer (RBM2), the w3, b3 
and c3 were the coding parameters in the third hidden 
layer (RBM3). Using the formula (1) and (2) calculated 
the signal feature value layer by layer. Then we got the 
reconstitution signal as shown in figure 5. 
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Figure 5. The time waveform of test signals under DBN feature 
abstract 

 
  The test signal was input to the encoder and generate the 
reconstitution signal. As shown in figure 5, the four types 
vibration signals were reconstructed by the encoder. 
Compared the figure 4 and figure 5, the reconstructed 
signal dimension has fell from 428 to 200. The feature 
waveform not only retained the fault signal energy shock, 
cycle and amplitude, but also recorded the energy change 
point. So we could use the reconstitution signal to 
describe the fault type and damage. 
 
3.3 Results and analysis 
 
In the reconginiton, we used the KNN classifier to 
identify all kinds of fault signal. As sufficient as possible 
for the singnals’ information, the expriment selected 14 
indexes as fault feature such as the signal sample average 
maximum, minimum, kurtosis, tie, the peak - peak value, 
amplitude value, variance, standard deviation, RMS, 
waveform factor and peak factor, pulse factor, margin 
factor. Compared with Wavelet-3, HTT and FFT means, 
the results were shown in table 3. 
 

568



 

 

Table 3. Results of bearing fault diagnosis 
Methods Computation time/s Accuracy/%

DBN 19.26 96.67 
Wavelet-3 20.13 91.67 

HHT 18.57 93.33 
FFT 15.79 86.67 

 
  In the reconginitong, the accuracy of DBN was 96.67%, 
it was higher than other methods. The computation time 
of DBN was longer than HHT and FFT, but shorter than 
Wavelet-3. In the DBN signal reconstruction, the singal 
calculated mainly through the hidden layers step by step, 
so the running time has increased with the hidden layers 
and nodes in the DBN. Compared with Wavelet-3, HTT 
and FFT means, the suggested methods were more 
effective and accurate for the identification of rolling 
bearing fault diagnosis in various situations. 

Due to the good ability of unsupervised learning, the 
DBN can effectively extract the data characteristics and 
effectively avoid fitting or local extremum problems. In 
the parameter passed layer by layer, the useful 
information was effective to keep the layers and 
constantly improved in the next layer of feature 
extraction.  

4 The Conclusion 

This paper has presented the novel approach of rolling 
bearing fault diagnosis using the DBN to reconstruct the 
vibration signals. The proposed method is applied to 
analyze the experimental vibration signals of rolling 
bearing. Due to the unsupervised learning, DBN 
extracted the vibration signal characteristics layer by 
layer, so it could more comprehensively retain useful 
information of the original data. The results confirm that 
it performs better than other exiting methods.The future 
study will pay more attention to improving the 
calculation efficiency of the proposed method. 
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