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Abstract—In this paper, we investigate a nonlinear weakly 
singular integral inequality. The upper bounds of the embedded 
unknown functions are estimated explicitly by the definitions and 
rules of conformable fractional differential and conformable 
fractional integration, the techniques of change of variable, and 
the method of amplification. The derived results can be applied in 
the study of qualitative properties of solutions of conformable 
fractional integral equations. 
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I. INTRODUCTION 

It is well known that integral equations are important tools 
to investigate the rule of natural phenomena. In the study of 
the qualitative properties of solutions of integral equations, 
one often deals with certain weakly singular integral 
inequalities. In 2008, Ma and Pecaric[1] investigated weakly 
singular integral inequality 
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In 2014, Zheng [2] discussed the weakly singular integral 
inequalities of the following form   
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With the development of the theory of differential 
equations, integral inequalities have been paid much attention 
by many authors. We refer to the papers [3-10] and the 
references cited therein.  

In this paper, on the basis of [2, 7, 8], we discuss weakly 
singular integral inequality 
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In order to investigate the integral inequality (4), we shall 
state some basic notations and lemmas, which will be used in 
the proofs of our main results. 

Definition 1. (see [11, 12]) The (left) conformable 
fractional derivative starting from a  of a function 

 Raf ),[:  of order 10   is defined by 
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Definition 2. (see [11, 12]) The (left) conformable 
fractional integral starting from a  of a 

function  Raf ),[:   of order 10   is defined by 
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Lemma 1. (see [11, 12]) Let ,,,, pba  are real 

constants with ]1,0( and gf , be  -differentiable at a 

point 0t .Let ))(()( tgfth  .Then 
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If, in addition, f is differentiable, then  
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II. MAIN RESULT 

Throughout this paper, let ).,0[ R Define three 

functions by 21 , ww in (4) 
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for all .0t  
Theorem 1. Suppose 

that ),(,,  RRChgf , ,, 21 ww
1

2
w

w ),(  RRC ar

e all nondecreasing and positive functions, and c is a 
nonnegative constant. If )(tu satisfies (4), then 
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and 1T is the largest number such that 
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Proof. Define a function )(1 tz  by the right hand side of 
the inequality (4), i. e. 
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We observe that )(1 tz is a positive and nondecreasing 

function on ),[ a . From (4) and (20) we have 

),[),()( 1  attztu 

caz )(1 

Using the define 2 of the (left) conformable fractional 
integral starting from a of a function and (20) 
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By the lemma 1, we get 
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From (21) and (24), we have 
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Define a function )(2 tz by 
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Obviously, )(2 tz  is a positive and nondecreasing function 

on ),[ a . From (22) and (26), we have 

),[),()( 21  attztz 
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Making a conformable fractional derivative starting from  

a of the function )(2 tz of order   , by the lemma 1, we 
obtain 
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By the definition of 1W  and the lemma 1, from (29) we 
obtain 
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Substituting t with   in (30), making a conformable 
fractional integral of order   for (30) with respect to   from 
0 to t and using the lemma 1, we obtain 
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where ],0[ 1TT   is chosen arbitrarily. Let 3z denote the 

right hand side of the inequality (31), i. e. 

   
T

a
dssfasazWtz )()()()( 1

213
  

  
t

a
dsszsgas 2

1 )()(   

 
  ],[,

)(

)(
)()(

21

221 Tatds
szw

szw
shas

t

a
   .           (32) 

which is a positive and nondecreasing function on ],[ Ta . 
From (31) and (32) we have 
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From (32) and (33), we have 
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for all ].,[ Tat    

Using the definition of  2W and the lemma 1, from (35) we get 
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Substituting t  with   in (36), making a fractional integral 
of order   for (36) with respect to  from 0 to t  and using 
the lemma 1, we obtain that 
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Let 4z  denote the right hand side of the inequality (37 ), i. 
e. 
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From (37 ) and (38) we have 
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From (38) and (39) we have 
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From (41) we get 
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From (42) we have 
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From (21), (27), (33) and (39), we get 
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From (28), (34), (40), (43) and (44), we have 
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Because ],0[ 1TT  is chosen arbitrarily, we obtain the 
required estimation (17). The proof is completed.  

III. SUMMARY 

In this paper, we investigate a nonlinear weakly singular 
integral inequality 
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By the definitions and rules of conformable fractional 
differential and conformable fractional integration, the 
techniques of change of variable and the method of 
amplification, we obtain the upper bounds of the embedded 
unknown functions: 

)(((([{)( 123
1

3
1

2
1

1 cWWWWWWtu   

))()())()( 11   
T

a

T

a
dssgasdssfas   

].,0[)]},)()( 1 Ttdsshas
t

a
    

ACKNOWLEDGMENT  

This research was supported by National Natural Science 
Foundation of China( No. 11561019,11161018), Guangxi 
Natural Science Foundation (Project No. 2012GX 
NSFAA053009), Scientific Research Foundation of the 
Education Department of Guangxi Autonomous Region of 
China (No. KY2015ZD103, KY2015LX341), and the high 
school specialty and curriculum integration project of Guangxi 
Zhuang Autonomous Region (No. GXTSZY2220). 

REFERENCES 
[1] Q.H. Ma and J. Pecaric,“Some new explicit bounds for weakly singular 

integral inequalities with applications to fractional dierential and integral 
equations.” J. Math. Anal. Appl.341(2), PP.894-905, 2008. 

[2] B. Zheng, “Explicit bounds derived by some new inequalities and 
applications in fractionalintegral equations,” Journal of Inequalities and 
Applications, 2014(4), PP. 1-12, 2014. 

[3] O. Lipovan,“ A retarded Gronwall-like inequality and its applications, ” 
J Math Anal Appl.,252, PP.389-401, 2000. 

[4] B. G. Pachpatte, “Explicit bound on a retarded integral inequality,” Math 
Inequal Appl., 7, PP.7-11, 2004. 

[5] R.P. Agarwal, S. Deng and W. Zhang, “Generalization of a retarded 
Gronwall-like inequalityand its applications,” Appl Math Comput., 165, 
PP.599-612, 2005. 

[6] Q.H. Ma, J. Pecaric, ”Estimates on solutions of some new nonlinear 
retarded Volterra-Fredholm type integral inequalities,” Nonlinear Anal., 
69, PP.393-407, 2008. 

[7] A. Abdeldaim and M. Yakout, “On some new integral inequalities of 
Gronwall-Bellman-Pachpatte type,” Appl Math Comput., 217, PP.7887-
7899, 2011. 

[8] H. El-Owaidy, A. Abdeldaim and A. A. El-Deeb, “On some new 
retarded nonlinear integral inequalities and theirs Applications,” 
Mathematical Sciences Letters, 3(3), PP.157-164, 2014. 

[9] G. C. Wu and E. W. M. Lee, “Fractional variational iteration method and 
its application,” Phys. Lett. A, 374, PP.2506-2509, 2010. 

[10] B. Zheng, “(G'/G)-expansion method for solving fractional partial di 
erential equations in the theory of mathematical physics.” Commun. 
Theor. Phys., 58, PP.623-630, 2012. 

[11] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, “A new Denition 
Of Fractional Derivative,” J. Comput. Appl. Math. 264. pp. 6570, 2014. 

[12] T. Abdeljawad, “On conformable fractional calculus,” J. Computational 
Appl. Math. 279, PP. 57-66, 2015 

162




